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BASE ONMAS;0R~bG~kPROJECTI[ONS

M.'Sofr. D. ach auchil

496iiWe"no M1d ase o wa*-hga Pr s do thtCan be
use todigifiie he libraeva lesin 0 DjoZ index 2 of mulubody syson

1. Introduction
Different approaches are possible for the description of the motion of a multibody

systm A vieofmcbodco''%tonly I se n mk~beflound in 111] or ( 15]. Amima
descripion, ,:14trane a no ,va thesmnallest system of dfeeta

the whole coniguration spw c 34tae$cu&itot ijlt n ohe

consrain racns ad de cosideatio offritin eorm the fact that the equations may
be xtrmel tiispicaedLe.- te fnctonsdescribing the differential equations are

diffcul to&rii ad cpoisve o cmpue; he ackof modularity, inthsemhate
h~widgiof he quaion of otin o susysemsis difficult to use in the derivation of

For his resmsoneof-he ~idly sedprocedures in the analysis of multibody
systm i todesribethesysem edunanty: ne smre variables than the strictly

tdescribe t motion loaly, and *moe constraints on the motion. With this
adiinlexpense: it is possible to'bia- all of the alov disadvantages of LaSrages
mto.Teequations to be solved form initially a mixed lgtacdfenaIsystem of

eutos(DAEs), the algebraic variables being theconstraint reactions. These can be
trae ietya DAEs using differeamomtheds (l,7.,10l.I11, or they can be reduced

taset ofordinarydiffreential equations (ODEs) by eliaznating the algelzai variables.
Wedescribe here& methodbasedonaaotooa projecticia developped in the pasn
fe [er 3.5.6,18-21). The conmtrini reactions aeiin isei in an extremely general

mo yteusage of mass-orthogonal projectors (trP) in velocity space; ot projects onto
tesbpcofadmissible vil6ciis. 0 Is its coaplmient. In the cno ou

prjeciors can be used to split the DA~s into a pore ODE for the motion of
th osriolsystem and algebraic expressions for the cos ract onsin?=o

poiinadvelocity. Ile resulting ODEs for the motion are not uniquely determined by

K____



Disur of Contai Systm Base Onl MO-Orthogonal Proeion

the men fti~ji dsystem and discuss briefly some sample ODE formulanons

Injirdes0 n -.isuon of thet linear algebra computations that. under
c~tfdergthand side

o f'the ODUs"Tes asupfn cae hemeuilddanbdscipo

lbelx~ncmetedii~U ise fr emeic~ &Mslaiossa of mibody systms In
seton4w' tecibe DYNAMn! (31 tolkabidsfwr htipeets the

cir~ii Wek~r(31in lutri ion 5.,Jiveadisi loos frction in the joints and
coilisloas re thelmai earsetdb this 'unAl pplication.

ained 6 az "t h ~cidno ooiandasesm Otnly of value
abu~anuasi jn hutor lend foasicalde-loens It is possible

so darsie ilo~M~aly~naealnd coserauvesystms ithh mihoeanODES, thus
Afoigdeug of theM cano Vica " rum (20.-Th~oofiguuatoo nifold ofa

hona~fy cou0'iA!# system ca al!0 be iewe asYI !usbded a eteIcdean space
with, consant muc Smple formula forth i vas i lkofsh cbnftpuatioa manfold o
the contraned syam may be obtined [6].' Acb to Synge r22) this has implications
for the stability of mion~ for orbits of the constrained system Corresponding results will
he presented elsewhere

L2. Miss-ortboloealusrojedors -and ODEfirulalonis
Cern ~ ~ -Amllys lsstmdestih Ad i coordnates q.r:5 non-

bOlonomlc veoty prametersu and mt u mx lieA be the invrasofM andI T(qu)

Remas that holonomic constraints have to he differennuted owce to takes this form We
contsider here only scieronemic onsatrains wa assume that the matix E has fill row tank,
i.e., that the constrais ate independent.

lnitidicing the canounical momentum p - Mu, the motion of the system under the

applied generailsed forcesaQ is described by te DAE systemnof index 2

i~~- +EX~ ETUO .

Le.. as thl. sum of the applied force Q and additional inertia temsm, quadratic in the
velocities and due to the nion Iconstant mass matrix and the non-holonomic velocity j
parameters [51. 111

We assum~e for the purposes of, the present description that the generalised forces Q
ma eii n(tq,u), but not directly on ).This rules out Mtction forces; see (3) for their

inclsionin te cosidesd1a

2



Dynansct of Consss'afaed Systems Based on'Mass .Orthoonal Projecuons

.2.1 Moss~orsagonal projectors
Consider the ortho-projectar (Sn the metric defined by the mass matrix W) a on the bull

space of Et'his projeto~r appears naturally in the~dymsiics of the system in one farm or
the-other, some other authors also use it explicitly (2,12.16,171. Let ' ~be-ts

copeentary projector. They saisfy the relanons
Up=0 , czTM-Mc , ON M ''d r b , do-=ctf. (4)

neprojectors can he calculatedunder Wr -'m-.onsas

Itouigtematices
31-ET" Etoflk!D, (6)

thededives of the pt~cM am given by,

Let us introduce as'a shorthuand
Xn= ax , x pT 

x (8)
to denote the ot resp. 0 projections of aco-vecto (forces, moment) x.
2Fwuan sordinay rex equadoa (ODE)
'M.r ire'iniy different systems of ordinary differential equations that describe the

system (2,,ell)J h o httheir solution sets contain all traijectories
(q(t),p(t))of the DAE 2). Afirsinfnte finlly of suh ODE formultions isgiven by

Fl: u.Ap,+Xpo , 4-flu,()

where the matriceaX and Y can takte any value, depending (regularly) on any of the
variables.1The~solutions of, (2) constitute-an invariant manifold (p - 0) for these
equations. Remark that these; equations representsa second order systems tn q if and only if
the mndx-MT + XP T -is invertible. If one chooies X =0then everytrajectory of (9)

stsesthe constraints (1), but in general is a solutio of the DAE (2) only if it lies on the
invariant manifold (pa a-0).

A second infinite ftumily of ODE formulations of (2) is give by
F2: u-Ap,1  i4.Iu,(0[

where the co-vector x can take any value, depending (regularly) on any Of the Variables.All solutions (q(t),JiQt) of (10) are trajectories of the constrained system. in the sens that
there is a)X such that (q,p,,) solves (2).

Formulations in the first'family have the advantage that, for trajectories that satisfy
(PA. 0), the viwep0 retais its physica interpCMretto as the Canonical MOMenUSM ot the
free System. Comparing (9), and (2), this I plesthat the non woin genetailsed

reatios ae gve by), Q ndarecalulaedduring the eAain of the right
hand side of the differential equation. Teratosethefea during any
numerical integration of system (9).

In the second family of formulations& the variable p canm in general be interpreted as
the canonica momentum of the free system; it is just an auxiliary variabin. In the general
case the constraint reactionss are not immediately available dunng a simulation. An

3~



idvi&49a of the ed faly is the fact that any solution of the differenta qatos(o

Meiireio o bt tiiso is not emty indeed, it follows easily
9)and(IO h~it is ivenb

where Z is any mmfde op!iMa Y ofLral

2.3Fsmples ofDPfonmwlaoI,-f
Wechose as cIamle the'feamtlasons describid in Tnbe 1. Remark that these

fonus ply onyin th cae here M (and hence A), atm onata the generalisation is
essen t ri .ivia but leads to bulkier, formuilae. Formulation 1 is the standard DA '

foitulatio of' ndx I solved forti kiniotadcal vaiaibles, as deacribed for instance in
(10,FomuiatinsAto 4 wvere already described and discussed in [181, whereas

formaulaton 5 corresponds to the "projected equations'of motion" presented in [ 16,17].7ttr gp)iformulation 6 causes the invariant manifold (pp ."0) to he

I 1 F Ap 0..QAp

2 Fl Ape Q- Q"OA &

3 F2 'A p, Q+QAp

4 F3 Apn 0+ T OTA p - 1A pa

5 P3 Apu 0a+0'Ap-VAp,

6 P3 Ap, , Qn..QA p -IQA pt. gp4
Tabl it Ezax I of ODE Formuatiemw (monmt h)

All formulations describe the constrained dynamics properly, but they differ in some
propeprdis tha mybereleviat fm'tei nmeical vaeaneL See [18,19] for some

ntumerical omprisaid [W 211]i thiuhdai~dx
Table 2 shows the integrals of motion for the ODE of each of die selected formulations.

Theinegalsoffoi~lti~ ar acitall iialau a they cause the well known

mtiofA (which is the cmrrct meic 'fbroorsc6 i h, for formulation 6

that this n -idiminishes exponenually (with expoent -211). In dhe third column appear

norm CI.P
the posbe________ ntant.R l.telatcluncrrsodst h

-~ 4
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C~wlMuantio,. which gives A PO pioprtegralof motion only whon the applied fores Q
lare conzervanve.,Remark that the energy equation is satisfied ina nroner sense for
Ritn~uladoc4. Foitiulations 4,and 6 have the funher property that a solution on the
liyr'an anifol1d -01 istzbleifi donly If ItS staas a ctyci DA1(2),

aiye using the propertis of the second family and the non-increasing

(1 a eiuen 4qu~vaty with any invertible (mxm)-marix S as
SETu. (12)

Foraons4nd 6 ainxthmpewit ep o the coce of S; 1, 3and 5ameno.
sotuaiu~ nd'S have lhiariant masnifoldscorrespowllg to possible holcoomic

ooaanutthe motion on these manloldb'oviever, eadontecieofSixn

We bive chosen forimulation4 for 6a rid dev~elopment. This choce is hased on
ow nidclepimns(18,193. on the'Invariance and stability properties of the

eqaosand on th fat doat thine is no risk 6f artlficially stiffening the equations, as my
he thecame for formulation 6.

3. Numterical linear algebra
The compuiation 6f the ukusme appearing in the formulae ahove ismno r, say. An

efcetcomputation avoids both tW~ maul invras sdmatrixmutplaiu eien
them with the iolutionof systemhs of eqluaici and matui-vtor mu)pf ctos Apart
from the calkslaion of inertia terus and appled ftce the Ziak fthe~oy ou effort
in all formulations is constiutted by the computation of the holesky fato of the matrix
0. once the factor is compui formulatiouji 1 an 3 requIre the solution of a single

eqa ionwt manii (0, the others eqIt ,two. For some systemsift may he advisable to

organize the computations in a d=frn =a.r solving ins~ead equations w.th the

The calculations presented above in terms of 0 amount to the inversion of (13) (using
range space techniques) in the form

M E A 0 0AE [0 0. 0 0 (14)

5T 0___0_1__GET_-



6ynwnuics rof CosondystamESed on Aian-OnhosoiiaLProjections

whreI s he(~ ~nttymai~Rek ti'a slving an e~qutowthm ix()
M Fr eetymu tibo y ktem Mar, naso awicthc matti (13

4escipll~ lnd nPi arg y f eq"stis w _ompared,_p alternativedescriptions
(e:deti~n £ sptuing trec of~thcsste inmnma ris),4 but havother '

adyges(e nem iuc)."N Widuc I§Fah ho~touVi the 'speCWal aMxnar of the j

Ftr10tha,'han lo o contant ,diage a Man A w , theki inversion according to
equation(14) becomes much cheape. Indeed,,A6 Nt need be calited only once at the

For'mosim mechenin ya e ach consraint invves at otwo Metfer bodies.
This is extpressed In, the *usry,(*ithontn 4aae anr)o th~e iatrix'R in any

deacuiption ~ ~ ~ ~ .whr h ois etoeldarately. ndeed; fit each oluminof E only the
rows ctxrespond io kl~isy para nof thicwtied bodiek ire occupitd. Le, -at

of bodiea'ofierowMamuip don vo witht r

a thew otgbthoe dnapnisefaae6L is cderingcanbdow

orderings. Aseachw 'vlutof the sht hand" lith ODE one has then to proceed to

comiseRusngthe Wnw Srlt ree this anbedoni either with a sparse

'second 4We~the reordingof herows ofE ierediee the comptuatonsl effort has to be

Alrady in the ei~vrly mall sevenbody mechanlssdcseribed in [15], where inou
descipto adRe cu ito,15% rsevey'37%, the conuiderais3 ofth

spsr"tyenn th acznd ms bysfacuofbofor.~
By~ areul uloiadonof~he saniy atactro Iisto be expected that the

compusa dleffo will V -w linieiyin theiiiamhiocnrraints and bodAe for, typical'
syste,thfacor~ bsbwio WII ianyysem whmone body is coned
to every cateir bodyi so that the'spars facuirisation may not be advantageous for such

sysem). d~ec uanneof maiii(13)'as aspure mix as the disadretag that the
pivot choice omiputed initially his to be mn itoedduing the fjctiaadoo to insure the
stablty of theslgoi"n a the matrix is indefinite. Recursive ellmnadon [13], a linerm-
growth algorithm. is applicable to systems with tree sruccmr loop-losing constraints
have to be treated searately in ohesystem

4. DYNA~iTE
4.1 Basfcfease

DYNAJAIT (3] is an implementndon of tb projection. method for the description of
niultinody systems as descntbed above, in partcular of ioemulaton 4. To meet industria
needs, this basic forulation has been extended to problems with umcdependent
constraints, with sliding friction dependent on noin-wxskig constraint forces and als to



Dy-~c of Conistaijsed System Based on Mass-Onhogonal Projections4

Prbasoi m kinetics. T7he additionlalert equations fithe aatment of sliding
fritio Xz tll in number and of ie 1 but non lineu, while die additional algebraic
equationstis 6db'mes iitics ame linear and of index 1 evn when, the imposed
motno n is stictly- satisfied it the veloicity level. The time-dependent constrasnts are taken

cnter of graity lnimcopnenss of iheldd and~ teoainleo yi

WNAb 112dunimb coordinprael, mdates:scn

body ' a d r? onstnte n do a massvi m an ices.n anaddion to sytather aeother
aborointes o at es a~p k(intca treatmen of eoiiiJ ac bod y uringfo

" --W'--'" a',6not necessatyot in t cas
"5"s 'O(Sraconalnt aniforeet__ ,and theitonl

6*ciltinof itaraae bd xt suiml (1radIpni ssystems are easciy pappened,
body an'coitait anddiisl~klmmau s~i ef~ined soat that cointer

foringulnaribesraess us~oe aand the

'ThecL~iof~yum tha ca besimulated with DYNAM M'' Is currently restricted to

DYNA 4lT conshst ofthdim um pawts
' dIks oefor aar'ystm one for spattial system): bodies, constraints,

forces. The 'tool-ktita came nunmerical -m and vociora lo describethe system
(A . C, tc) Neweonsrali r forces can easily he, appended. to the tool.
sisby the uier.
Usetidgr 6 .Fy a nssemidpedncalc lcuaino h

and vectors ciiiised' by61 the tkis.'Speciakauntiou has bee paid to the

* nwjralors:ISODARaidAS
isa joitt deeoeet of the Swis Federal Institute of Technology

Zurich and Oe olkon.C sZ' rch; ii is sposored by the Commission for the
prominois cientif17R~aeote ws eea Deparsesimt of Economy.

4.2 Futui'evelopaenn
DYNARM will he extenddto perform paamter-sensitivity analysis (with

analytically genterate sensisiity matrices) and to handle small and large elastic
dfradons. Other possible extensions sm numerical methods for statically idtrie
systemsadequat methosfor stiffsystems.

43 Previous Industrial Appicagmow
DYNAME has been tiested on theoretical systems and on the two stanasti reference
exmpe simula1.ti aclculaben ofpleneg osuimes ti on ofaratlin gunlms

(Oerllon-Contraves. Zurch)

7



Dyn ~oCons wa-MSy-Baed oW ias Orho jonal Projecnons

Odcllaoisonwth'BB'a'aa Rseich.CHBaden.Dlawil: see next

S. Simulat tinWo a Low VoltageClrcuit, reaker with DYNAMITE
5.! Syiem dcndon

Ihe' .. ban4 depk ed i ueI i nte*i o eed".,cossts of sapt
sad 3 wA IF connects 4 5 iid 6): Three rveoli joints conncc~pauts of the mechanism to
the iertialyss'(A whihlB with 2Aid Cwith 5).

Figmi1 Circuit' Ie in dos clod conflwrde

Attached to body 2 isa mnipulation handl to bring the cscutzbreaker fmrhe position

"opeal, to the position "cloed". Body 6 Is the vansmisslon pan between the circuit contact
Reons Mjthulkeril cnauaints.(where -mpacts can occur depending on the

with 0 canoccoitogeshiith b & 2 and 3) ad . Reglins I (bolt H Is purtof body 3)
and h (whern a book holds; body 1) am other region of unilateral costaInts. noe
unlaea onsmitlnts(body 2), fand gearssvdiweThecrcuts closdind a. band e
(body 3)=activewhen dscircult s We

!Me macbenisn IVA s10 deme i( redom when no unilateral constraint is active: the

'he mechanism contain two springs: one between bodies 5 and 6 and the other
between body 2 (point Iin Figural1) and the bolt of se'oluse joint D, the latter being the
main uAtsin springrsponsible for the the motion cithe mechaan.

The mechnism ys in theclosed oido'a lng asbodyllis bldInhItby aboo
Taking away that book sums the transition froni"~eied t0open'; this juoesa takes less
then 0.04 second. What happens during this tansiti can be described roughly as
follows: The forc of the elonaped manUen.n' prn acting on joint D leads via body 3
and joint E to a torque actrngcoUntercokwa on boyL'Body 2 stays in its initial
Position atlong U the line of applcation ofthe main ensionspring ison the left adAM
of Joins B. Body 3 nurns clockwise tetiI the line of applito of the main tension spring
changes from the left hand side of joint E to the right hand side; it thent turns
counterclockw Ie finsl position is defined by the activity of unilateral joints a. b and.c
(body 3), a explained above.

5.2 Sbrudont and E,4,ennt
Figures 2 and 3 show the calculated angles of bodies 5 and 6 defining together the

destineo dy 6whih s fncthe al eeat.Fiue2sosasteeprmnal
postrineo dy 6 whicho ie aunlofady eea. Fgr hw loteeprmnal

Fisur 2. Ansle of body 5 (W). experon ad "alumc

Figure 3: Angle of bedy 6 (q). sualane

LI~zi



Dynnuct of Cossatned Systems Based on Mass.Orthogonal Projections

Tesimulation is based on prmtrvlssdtrie yeprmns aaee
variations anviaon in fthe moeln fdmig rcinadipcsaeimportant

when studyn seljr oticlclios Thereby, the not negligible vaito of the
mentioned phenoen in relt swl se complexity of the mmchnim n body 6 has

,1.h p -aee #,tnso~ temosc fensrtivny analysis which will be the
eteso of DYA T. Thinb toits feitus- especially the mai -stucture of

the eq uato s !OYA I E I w l~ u t d Fo this extenubon 1 n the developem ent cycle.
analyasplays an eve more intpotant'sole then in the sanalyi fgtnmahis .
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The dvamics of r,,gi niultibodies is traditionally formulated by means of either minimal or redun-
dust coordinates methods'. An liernativt approach is here proposed whereby a set of more than
redundant coord-nates is adopted. As a result, the equations defining the constraints and the motion
of the bodies are decoupled. many physically meaningful response variables are directly available
while tae constraint conditions are imposed in a very natural way. The first part of the paper pre-
sents the basic concept aitd the theoretical developments of the formulation while the second part
develops a numerical approximation for the methodology proposed in the first part. The nonlinear
system of differential-algebraic equations ruling the motion of the system is written is its weak form
and solved by applying a .ewton-Raphsou procedure to a finite elements approximation in the time
domain, The details of the numerical implementation of this method will be discussed and a solution
procedure will be presented. Some numerical examples involving tree and closed loop topologies will
finally prove the capability of the present formulation in handling mulibody dynamics.

1 Introduction

The definition of general purpose algorithms for the analysis of the dynamics of rigid multibodies
represents an interesting task in modern computational mechanics. The literature on this subject
is very rich, filling any aspect of the problem ,2.4, Various approaches have been proposed to
analyse the motion of a moltibody system. Starting from a common set of primitive equations, the
mechanical system can be described in its state space by means of a set of Ordinary Differential
Equations (ODE) or in its physical space by means of a set of Differential Algebraic Equations
(DAE) 3. In the first family one finds the minimal set methods "., and in the second the redundant
coordinates methods 9.0.1.ti.
This paper presents a new formulation to face the dynamics of rigid multibodies starting from its
basic concepts and trying to explain its most innovative and Interesting features. In the development
of this work we try to take In some particularly felt requirements In multibody dynamics. At fint we
chose to have at disposal a wide set of primary unknowns with an immediate and univocal physical
meaning allowing to avoid cumbersome and mathematically sophisticated pre and post processings
so prepare the data and to recover interesting design parameters 13.14.15.16. Moreover we organise
she multibody model in such a way to solve many different problems such as direct and inverse
kinematic and dynamic analysis, control system design and stability analysis in a unified framework.
We rearran ge the equations of motion to obtain a significant decoupling between the bodies and the
constraints, thus allowing an easy exploitation of the massive parallelism of the modern hardware
and software architectures I.s. "" 11 A
To this end we develope a general kinematic analysis to stress the relation between the absolute
coordinates, used to define the position of the bodies, and the relative coordinates, used to define
th~e reciprocal position of two constrained bodies. In this formulation the absolute and relativei

coordinates are considered independent parameters constrained by a kinematic equation. A set of
new unknown vectors, called multipliers, is then defined. Thbe are related to the internal forces of the
constraints as the momenta are related to she external forces acting on a free body. Two interesting
results can be obtained in this way. The multipliers permit to properly define the modified momenta
and to write the equations of motion of a constrained rigid body as those of a free body. Moreover. the
aim of decoupllng the equations of the bodies and constraints is reached, the multipliers representing
the interface between the elements of the multibody system. The decoupling is shown also by a
variational principle ruling the motion of a multibody system in Lagrangian form. The availability '4
of the relative coordinates and of the internal forces allows a natural and easy imposition of the j.
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constraints and a direct evaluation of these two parameters that are basics in the design of control
5 stems.

2 Kinematic Analysis

The kinematic model of the elementary multibody system presented in Figure I and consisting in
two constrained rigid bodies will be here outlined and analysed. The origin of an Inertial Reference
Frame (IRF) is placed at the point 0. those of two Embedded Reference Frames (ERF) at the points
P, and P, and the points of the bodies where the constraints are applied will be called Q, and Q1.
A set of Lagrangian coordinates for the rigid bodies can be obtained by joining the position vectors
of the reference points P, and P, and the finite rotation vectors p, and p, that rotate the bodieswith respect to a reference configuration. They can be summarized by using the enlarged vectors
(e.r.) , notation as:

r atural set of relative coordinates is formed by the distance vector e which connects the constrained
points Q, and Q, and by a properly defined relative rotation p.

qn = (e,p)

The absolute and relative position e.v are represented with a notation that will be maintained fvr
some other enlarged vectors. The symbol at the right upper corner represents either the body to
which the vector is referrvd, if it is a number, or a relative parameter if it is R. The symbol at theright lower corner represents the point to which the enlarged vector is referred. Two equations can
be stated to relate the relative coordinates to the bodies:

b, = b, Je R(p,) = R(P)R(P,) ()

in which R(p), R(p,) and R(p) are the rotation matrices associated to the rotation vectors p,

p and p. it must be noted that the use of the finite rotation vector to parametrize the rotation
group SO (3) is not the only possibility and several alternatives have been proposed iS The relative
linear velocity measured at the points Q, and Q. can be defined by'

=ui+ 4e +o = o' (2)
manipulating which it is not difficult to prove:

A d A dV =-te oQ =-e (3)
In the above equation and in the followings the symbol (represents the relative time derivative or
variation. i.e. as evaluated by an observer embedded in the sth body.
The definition of a relative angular velocity is less problematic than that of the linear one because
of its independence from the choice of the reference point It can thus be consistently defined as.

w(4)

which can be manipulated to obtain:
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Some paramertzat-ons of the matrix r are presented in References 20 and 21. A relative velocitv
e.v. can be defned by stacking the above definitions:

(p) =x (4) o

= (e) , r' (p " (qQ2)

These two vectors can be related by means of the transport operator 3 13 E associated to the relative
displacement e:

W A

Moreover, indicating by , and wo, the velocity e.r. of the bodies:

so ii ' = (,w,)

the kinematic equation for the constrant can be stated by: roI.
ro _ ' Er,, Aoo, - E o0  -so0  = 0n ()

3 Differential Formulation

The equations of motion of each constrained rigid body can be written using Euler equations:

,+ S0(o,)po,-qo, Q,0 (6)

In which p represents the momenta em., i.e.. the vector formed by the linear and angular momentum
of eact body, w is the velocity e.v. formed by the linear and angular velocity, Q and Q are the
external and internal forces e.., i.e., the vectors formed by the resultant force and torque.
The internal forces e.v. on the two bodies are related by the equation:

Q 2 + Eqo, = 0 (7)

The vectors QA appear explicitly in the Euler equations to couple the equations of the bodies. Some
elements can be defined to allow the decoupling of the Euler equations. In fact. if the bodies were
unconstrained, their equations would have been written as:

This fact suggests to define the multipliers A' and A', which are related to the internal forces as
momenta are to the external force. i e:



A. - s,(,w')A'o = Q.,!
substtuting equation t8) into equation (6) it seems natural to define the moufied momenta e.i.s
as:

and to write equations (6) in the form:

. + S,(,')'O', - Q , 0 (9)
Equations (8) can be substituted into oquation (7); thus establishing a linkage between the two
multipliers. The result can be manipulated to obtain:

d + EA, ) + S, + EA'.) = 0 (10)

Equation (10) is fulfilled by setting:

A + EAo, 0 (l

The above equation suggests a transport law for the multipliers analogous to that used for the
momenta. Moreover, starting from equation (11) and enforcing the definitions of the muttplieis,
equation (7) can be obtained. This means that the set of equations k8) and (11) is fully equivalent to
equation (7). Equations (9) can be referred to the reference points P, and Pi, the modified Euler
equations can thus be obtained:

pp. + S,(W',),' - Q'. = 0 (12)

The multpliers A' and A' , referred to the points P, and P5 , can now be linked by applying the
transport opertors to equation (11); thus obtaining:

A',, +H, 5 =0

The matrix If being the transport operator isociated to the distance vector

h = c, + e - c, = P -P,

Some interesting results have been obtained substituting the set of equations (6) and (7) with that of
equatons (8), (12) and (13). The equations of motion of each constrained rigid body can be written
in the same way as those of the corresponding free body by exchanging the ordinary momenta with
the modifed ones; thus decoupling the equations of the constrained bodies. The above definitions
of the modified momenta permit to project the Euler equations onto some directions of the phase
space 22,23-4 This projections have the property to free the modified momenta from any constraint.
On the other hand the action of the constraint has been explicitly charged only onto equations (8)

* and (13) thus leaving equation (12) unrelated to any constraint. I -

A decoupling between the bodies can now be attempted also for equation (5) ruling the kinematics
of the system through the constraint. To this end, let us refer the kinematic equation to the points
P, and P,-

17



7,

w,. - H w", - C, w1. = 0

the matrix C, being the transport operator associated to the distance vector c. A. new unknown 1,
can be defined b% '

,w i -V=0

and ton kinematic equation through the constraint can be written as:

~~W', - ]-rV - C , = 0

To complete the system of DAE ruling th moution of the multibody system the constitutive equation
of the constraint must be added. ThiS equation has the form:

q , iq ,,^  q 0 (14)

and cannot be further specified without entering into the details of tach constrain.

4 Variational Principles
The im of this paragraph is to develop a variational principle governing the motion of a multibody

system. The starting point will be the system of DAE equations previouly discussed and summarised
in its m (st genera s form below, Lwe.:

pp, + sM0 ',* , -Q', = 0 (15)
A,, + HA, = 0 (16)

t,, - t, = 0 (17)

Equaton (21) is the consituti ve equation of the rigid bodies and wl be consie ssrdi only in theHamiltonian form. Its role is to establish a linkage between the velocity to and fo defined by: #

I aachieved by multiplying the equations of the system by proper weight functions and combining them .

hnrearly, In a Lagranigian approach not all the equations and unknowns will be held. As a matter af

fact. the constitutive equations (21) will be considered as satisfied a priori. The momenta e.u. %IIInot be considered as a primary unknown but simply recovered a posteriori by multiplying the ,nass

18.



matrix by the velocity. The velocity e.v. is related only to the time derivative of the Larangian
coordinate er.. so that. no difference exists between the velocity e r. us and w Equation i 15) can
he scalarly multiplied by the pseudo-variation of the Lagrangian coordinates q,,:

This equation can be manipulated by applying the product differentiation rule and writing q', as

depending from 6ii,,; thus obtaining:

Stq,,,p,,) - 6 us,,p,, - q,,,, -- o 20 (22)

The Lagrangian function of a rigid ody subjected to non conservative forces, can be written:

AC, = lus, iM"'u

The socond term of equation (22) suggests to define a modified Lagrangian function:

and to evaluate its variation:

b1 - ',.',. -,W,Pd' ,.

This definitions can be introduced into equation (22) obtaining the variational form of the Euler

equations.

64(;. ,1- - =;°','. -q',. ', = 0 (23)
The variational form for the differential system will be obtained by summing equations (23) with
equations (16)-(20) scalarly multiplied by the funtt,ons - 6 a5 , 6 a"P *, ® and q kpplying the
product differentiation rule to all the terms containing an explicit time derivative 01 the unknowns
and by manipulating the linear combination we can write:

Pd / P3

-d(i+ 4s + v.\ii + .~ s)A)+

- +(o, + q,,Q +q,,Q') +

(Hn/usi + q qn A = 0 (24)

It is interesting t,. note that, although from a mathematical point of view the weight functions
must be independent in general sense, this independence is not coaipletely arbitrary if a mechanical
meaning is assigned to them. In fact, the last row of equation (24) must be zero if the kinematic
consistenc of the virtual displacements muwt be conserved. Some interesting remarks can be made
on this variaticnal form At first it must be noticed that. substituting the ordinary Lagrangian
functions and momenta e v with the modified ones. the contribution of each of the constrained rigid
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bodies-is the same as that of a free body: e.. the sutm of the boundary term, of the ariatioo of the
L agraogian function aod of the virtual work of the external forces. Moreover. 'he constraint appears
into the equation as a tmechanical element characterised by a boundary and virtual work term for
wchich the role of the Lagrangisot coordinates is played by the relative coordinates: that of exteroal
forces by the internal forces aod that of tmomenta by the constraint multipliers. The Lagraoeiat,
fuoction cannot be defined for the constraint because it has no mass. The term corresponding to the
varisoor, of the Lagrangian function has been introduced in Roith's form: i.6.. as the product of the
generalitrd momenta er.. i.e. the multipliers, with the correspondent genteralised velocity C. isis
A similar principle cant be obtnd by operating on the Hamiltonian form of the system of DAE and
it is not reported here for sake of brevity.

5 Linearized Weak Form

The weak form of the s.,stemr of DAE is obtained by integrating over the time domain [ti, tsJ C R -he
dot product of the equations of motion in Hamiltonian form b- some arbitrary test functions V E V.

Integrating by pairs until oil the time derivatives are wholly charged upon the test functions:

+v(A', (S +r +, (sit,) + je

rs (\' d

~~~(-a~~t4, +uq',,) +s~5
(5

To introduce the numerical apPsroximation. we write the weak form (25) in a more abstract way. To

t his end. let us call V the vector formed by all the test functions and by their time derivatives. .1 (u)
'he vector gathering all the functions multiplied by them and 8 thet scalar function containing ail
the terms at the boundary of the time domain. Equation (25) can thus be written:[

jVJ (u) dt =[(1't (26)

The test functions appear intoequation (26) with their time derivatives and the trial functions appear
through the vector .7(s) without any time derivative. A pmsilile choice of the space of the test

fusnctions could be:

V := {v (t) : rE R (11, ts)} U := {ua(t) : u E Ho(s~)

at appropriate boundary conditions for the unknowns which are defined on the boundary. V CZ
U and this fact will permit. as shown in the next paragraph, the use of two differtrnt numerica

The weak form (26) is Enearly dependent upon the test functions and their derivatives and it is nion

linearly dependent upon the unknown vector tu. In order to apply the finite elements in time, the
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,eak form (26) must be sritten as a bilinear form i the test and trial functions. To this end. e
1inearize the vector .1(u) around a reference condition U. it is noted that B does not need to be
1inearized

LVj. (u) dt= V7 (U)dt + I VT(C)dudt + j Vdt (27)

T (U) is the ;acobian matrix of the vector ." (u) evaluated at V. du is the increment of the unknowns
and s all the terms that will be neglected. The incremental equation can be obtained by substituting

equation (27) into (26) and omitting all the negligible terms.

V7(U)dudt = [B]g'1 - VJ'(U)dt (28)

6 Numerical Approximation

The aim of this paragraph is to introduce a numerical discretization and to describe the solution

algorithm for a typical initial value problem. The vector V in ecuation (28) is ordered with th.

test functions followed by their time derivatives. The matrices T(U) and .1(i) are then orderea

consequently. Thus, indicating with T, (U) and J, (U) the blocks of "(U) and J (U) multiplled by
the test functions and with T, (U) and .3 (U) those multiplied by their time derivatives, equation
(28) becomes:

T, e 7(U) dud =[vu. j {'} [aJUM dt (29)
In ~T thseuain(U) 1 J, (U)

this equation we apply the finite elements approximation after dividing the time domain (ft,t2]

i n time finite elements. The test and the trial functions v and u are then written as.

V,= (t)V u= ¢(t U

in which V and U represent the vectors of the test and unknown functions at the nodes. 0, and
<P are basis in the spacei U, 9 U and V, C_ V in which the approximated problem is solbed. If a

polynomial approximation is used, the spaces U. and V, are sibspaces of the space S, of the kth

order polynomials. As shown in the last paragraph, the functions 0, can be lit order polynomials

at least. i.e. piecewise linear functions. 0. can instead be 0 order polynomials at least. I e. plecewise

constants. The number of nodes N, defining the test functiovs (at least two) and those N, used

for the unknowns (at least one) can thus be related by:

N,. = N, +1

Substituting such an approximation into equation (29), it becomes:

V( "1 r n1 t 1 (I"', 1 01 -1, i, T U UV3 1(U) 1) (30

On the other hand. the shape functions that multiply the terms u, are non zero only at the two

external nodes The boundary terms can thus be written:

. .



,~ ~ r 0

:~ 0!
1 U)

Indicating %ith n the number of unknowns and with n., the unknowns defined at the boundaries.
I a unit diagonal matrii wih n., rows. the central block is formed by nv (n- I null rows.
Substituting equation (31) into (30):

0T, (U) d (32)T, (U) 4$ " dl) dU= 0 0J u

for a typical initial value problem equation (32) represents a system of linear equations in the
unknowns dU and u,, with known terms defined by the first boundary condition and by the tentative
solution . The linear system can thus be written in the form:

0f , (33)

with:

M V
Ve observe that the upper block of equations l (33) is not ayected by the unknowns un but only

by dU This fact suggests an iterative solution algorithm. Starting from a trial solution U., the
increment dU can be evaluated by solving the upper side of the linear system (33). The solution is
updated at any iteration:

U,., = U, + dU

U,,, becomes the new reference solution to evaluate the tango 't matrix /C and the residual vector
R. Once the convergence is reached, the increment dU is considered negligible. In such a way, it
cannot affect the lower side ofrsystem (33) ad the final boundary condition can be directy recovered '

by:

U62 = -'t (U-.1) (34)

This procedure can be applied in the assembled form on the time domain (i, t2l or in the :ncremental
form on the single time finite element I,,t,+J. In this case the final boundary condition becomes the
initial one for the successive time step. It must also be observed that not all of the unknowns have
boundary terms, in fact, the vectorsAi, , and Q' have only internal values. On the other hand.
not all the equations are interrated by part so that the balance between equations and unknowns is
conserved. Considenug a general multibody system formed by Ns bodies and N. constraints, the
total number of internal and boundary unknowns is the given by: }

I h be r N=6(2.NN +2.NvN ,3-NN,) (35) 4
It should be remarked that the subsequent examples have been carried out by assurmng N. =
and N, = 2: this should be understoo. even if it is not explicitly stated. j
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7 Sparse Matrix Techniques

Equation 01 makes it clear that the adiantages of a more than redundant formulation implies a
hea% cost in term of the number of unknowns. This fact does not implies a correspondent increase
in computer cost because of thd high sparsity of the resulting noninear system of equations. In
fact. most of thie equations are nothing more than mere definitions adopted to allow the decoupling
of the equations and a' thus related just to few unknons., Moreover their elimination during the
solution. eg. through s. factorization. requires very fewadditions and multiplications and maintains
the sparsity of thi 'yste aiince ii introduc'es new terms whose number, is of the order of the directly
connesed bodiei.' I shoiuld be sufficent to note that the multibody system presented in Example 2.2require s 1032 unkitowrns. 372 6f'w-hih i'e tezidr~ . posteiori as boundary terms by means of

equation (34). The remaining 660 unknowns present a sparsity of .81 per cent that. after the
factorization, becomes of 1.15 per cent. It is noted that the approach presented in this paper has
many similarities with the tableau techniques adopted in electrical circuits analysis 2*. Thus. despite
the large number of unknowns, the more than redundant coordinates formulation can be treated
efficientlX by the -adoption of sparse solvers of the same type used for circuits analysis is. In the
implementation of the present formulation the solver has been taken from Reference 29 and the
assembling of the sparse system has been programmed anew through an efficient implementation
of the hashing techniques found in the same reference. Hashing is quite effective since, because of
the spare memory that must conservatively be kept in view of the fill in during the factorization,
the working core space can be allocated once for all and the probability of different matrix terms
colliding is very rare.
It can be interesting to note that, since the assembly and solution time is negligible with respect
to that of setting up the equations, it is easy to implement the present formulation on parallel
computers. In such a case the equations of the different bodies and constraints can be evaluated
independently on the available CPUs without any need of synchronisation. The assembly can also be
easily paralleled by pre assembling the elements to be processed by each CPU. The only operations to
be performed in series are the final asser, lies of the sub blocks and the solutions which, as previously
noted, are of negligible cost. It is furthermore noted that what said above is applicable both in case
of shared and dedicated central memory as communication and/or synchronisation of the different
CPUs is required only during the final phase.

8 Numerical Examples

In order to prove the capability of the present method in handling complex problems in rigid multi.
body dynamics. some examples have been considered. The results will be discussed and compared
to those available in the literature as well as to those obtained by using the multibody program
ADAMS '.

8.1 Example 1: The Bipendulum
We have considered the motion of the bipendulum of Figure 2 whose geometrical and inertial pro-
perties are reported in Table 1, At time t = 0 the two bars are aligned on the negative Y axis and
rotate with an angular velocity of 4 rad/o around the z axis. Two different configuraions have been
tested considering different combinations of joints.
In Example I I the bars are linked by spherical joints and the result is a very complex three dimen.
sional motion because of the combination of the %eight, centrifugal and gyroscopic forces. Figure 3
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present the cross plot of the coordinates z. y of the centre of mass Co.\f) of the two bars and allows

to appr:,v'.e the perfect accordance between these results and those taken from the literature " 1

In Exaniple 1.2 bar I is connected to the IRF by means of a constraint that enforces the component

tof the relative angular %elocity along the z axis to be constant. The linkage between bars I and 2.
instead. is constituted by a damped hinge with an hinge axis parallel to the z direction at time t = 0
and, embedded into body 1. The motion 'of bar 2 is a damped oscillation into the plane U: till a
position ir reached in which'the inertia forces balance the 'eight. Such a position can be esaluated
h5bylsolving a problem with a single degree of freedom. Figure 4 presents the time history of the

coordinate of the CoM of bar2 for some values of the damping coefficients c. Despite the lack
of comparisons, theconfiguration of d nnlic equilibiium and the behaviour of the system at the
changing of the danpi g coefficient, have b~en 'verifid to be correct.

8.2 The Fifteen Links Chain

These examples havebeen taken from a classical test case of multibody dynamics. i.e. the fifteen
links chain of Figure 5. Each link of the chain is a bar as in the previous example and the joints
between the links have been modelled by means of spherical joints. In the initial configuration the

chain is suspended at points 1,6, 11 and 16 and it is then left to fall unhooking some of the suspension
points,
In Example 2.1 the chain falls suspended only at point I for 1.5 seconds. Figure 6 presents tie
animation of the fall while Figure 7 presents the time history of the z coordinate of the CoM of l:ars

3,8.13, Figure 8 presents the time history of the norm of the internal force in joint 8. The results are
in accordance with both those in the reported literature 23,31 and with those given by ADAMS. Theaction of the constraints is progw ssively extended from the left to the right of the chain. Each link

falls substatially free, the I coordinates describe the same parabola, till the left side neighbouring
recalls it in an almost impulsive way as shown by the peaks in the constraint reaction.
In Example 2.2 the chain falls suspended at points 1 and 18 for 0.5 seconds and the bars I and
15 are enforced to rotate counter clockwise around the z axis with a constant angular velocity of
20 rad/s. The problem, without any comparson in the literature, constitutes a tough test for the
robustness of the method. Figures 9a presents the animation of the chain in the time interval from

0 to .16 seconds. The links of the side arches rotate and press on the mid arch, thus slackening the

fallk of its links, as shown by Figure 10. Figures 9b presents the animation during the time interval
from .16 to .33 seconds, in %hich the elements of the middie arch are sharply flung up. The time

history of the CoM of bar 8 presents an angular point and a strong increase of the slope. Figures 9c
presents the motion in the time interval from .33 to .5 seconds. The elements of the side arches are

folded and rotate around the points 1 and 16; thus tightening the chain. t must be emphasised that
the examples have been carried out as three dimensional simulations, although Example 1.2 presents

an axial symmetry and examples 2 present planar motion. This fact has permitted to verify the

robustness of the algorithm in conserving some geometric properties as planarity or symmetry. The

results are in accordance wsth those of the ADAMS simulation during the first phase. The angular

point on the bottom of the trajectory is slightly shifted but the flung up presents the same slope

No folding is observed for the elements of the external arches and thus, those of the central, present

a wide oscillation without to be tightened. It must be observed that discrepancies emerged only for

symmetric problems, in %hich the motion is so constricted to present significant bifurcations in the

unknowns space. In these situations the behaviour of the system is difficult to be predicted because

of the non hinearities and appears to be intimately related to the numerical approximation and to

the solution algorithm. j
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9 Concluding Remarks
In t his u ork presented a general ah,€r(Ithm for the dynamic analysis of rigid multibodv systems, The
heoreica'l analysis of the kinematic a nd dvnamic models permitted to set the problem in an effect Ive

%orking frame. Starting from the system of differential-algebraic equations. a variational principle
%as developed that 'aldwed an interpretation of the present work 6rom the classical point of view of
analytical mechanics. A proper definition of the multipliers allowed to achieve the double aim of an
intrinsic stablusaiit'n of the constraints, even in presence of numerically stiff problems, and a total
ilecouplin'of the'e iuations of the bodies ard.tha cristralnts. This decoupling~can be profitably
and easily exploited if parallel computation techniques can be applied to increase the efficiency of
the method. The use of relative coordinates and of internal forces makes it natural the imposition
of many and different constraints: thus permitting an easy development of a wide constraints library
as requested by multibody dynamics. On the other hand, despite the large number of unknowns
and equations, an efficient solution has been achieved by the adoption of a sparse solver. Moreover.
the present work provides a sound basis for a further development of the method. In this view, thb
addition of deformable elements and active control techmquas seem to be the most significant.
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Fue1 The Elementary Mulsabody System
'Figure -2 :Example i ..The Bientdum'
Fii*r 4,: Eialrnple 1,1 -X vs. Y Coordinates of Co,11
Figure 4 , Example 1.2 - Time vs. Z Coordinate of CoMl
'Figure .5: Example 2 - The Fifteen Linkms Chain
Figure 6: Example 2.1 --The Falling Chain
.Figure I Exmple 2,1 -Time vs. -Z Coordinate of Co,1l of bars .1.8.13

Figure 9 xl 2.1-Tmv. noitgue9 Example 2.2 - The Rotating-Failing Chain

Figure 10: Example 2.2 - Time vs. Z Coordinate of CoMf of bar 8

I2



QfI
29A



4',4~ 174



BAR1
- -BAR 2

-. 0

X-CG POSITION (FT)

FIGURE 3

0.0

c=.5
c= 1.5

-0.2-

TIME (s)
FIGURE 4

31



3 ,I

FIGURE 5

7-zo,



0.

;'.~ ,9~

.$ ~'~' I
- ~ x '

~9i

~ *1I -.,, f
{ i
I /

I ~ (, ./

I I P
I I,

FIGURE 6 *1.
& 1'

V
33



~-6~

L .. BAR 3/
BARB 8

-0BAR 73V
-.- BAR 3 ADAMS

--. 'BARB8 ADAAdS
- BAR 13 ADAMS

-12 1 .I : II III
1.i .. . 5 '

TIME (S)
FIGURE 7

.51.0 1.5
TIME (S*)

FIGURE 8



P(a.

(b)

FIGURnE 9



-2,

1~ 2~ ~.Present Method
k ~ ~ .ADAMS -

1 -2j

TIME (S)

FIGURE 10



gravity 32.174

Table 1: Bipendulum Data

37



I I

I I

ii

I

I 3$ lj.



AN EFFICIENT IMPLEMENTATION OF THE VELOCITY TRANSFORMATION
METHOD FOR REAL-TLME DYNAMICS WITH ILLUSTRATIVE EXAMPLES

3. M. JIMt'Z A. N. AVELLO. J GARCIA DE JALN AND A. L AVELLO
Utuversuy qff Nae and CFJT

i P. Mamuel de Larifi, 15Zl

dynamic stmulaton of mulubody systems. Closed-loop systems are wined into open-loop systems by

cutting joint. The closure conditions of the cut joints are imposed ny explicit constra eqUauons. Ar
algorithm for real-time simulation is presented that is well suited for parallel processing. The most
computadonally demanding tasks are matrix and vector products that may be computed in parallel for each
body. Four examples are presented that diustrate the prformance of the method.

1. Introduction

Real-time simulation is becoming stesdily more important. With the appearance of the first
digital computers the challenge of simulating multibody systems started. The first challenge was
to develop general and robust formulations well suited for computer implementation. Several
are described In Schlehlen (1990). Fromn the sixties to the late eighties. the programs were

steadily Improved by adding new capabilities. Nowadays, the multibody simulation programs am
powerful and versatile tools, able to carry out simulations of systems with all kinds of joints and
subject to any type of applied forces. Furthermore, the include interfaces with CAD, finite
element and animation programs. However, many of these programs have sacnficed efficiency
on behalf of generality and versatlity. "

Real-time multibody simulation is the starting point for man-in-the-loop simulators and
hardware-in-the-loop testing and design set-ups. To achieve real-time behavior it Is neceasary to
have a sufficiently fast computer but also an efficient numerical algonthm. Processor speeds ame
increasing by a factor of m i only a few yea,s and at the sane ume procezsors' architecrres are
evolving incessantly. However. formulating and solving the dynamics of mulubody systems is an
inherently complex task that requires very efficiently and well-implemented algonthms.

A thorough survey of dynamic formulations for serial ngid body multibody systems is given
by Jain (1991). Formulations whose complexity grows linearly with the number of degrees of
freedom are called O(N) formulations. Jain (1991) reviews most of the O(N), O(N) and O(N

3)
formulations and gives a unified approach for senal open-loop systems. Well-known
formulations, such as those developed by Wilker and Onn (1982) Featherstone (1987),
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Figure I. Open chain mulubody system.

Armstrong (1979). Bae and Haug (1987) and Rosenthal (1987), are among the formulations
reviewed.

Fjany and Beczy (1990) presented an improved version of Walker and On's (1982) 0(2)
method and developed an algoitlen well suited for parallel implementation on massively parallel
computers.

Bae and Haug (1987) presented a generalization of Featherstone's O(N) method for systems
with all types of joints. Ban et al (1988) showed the potential of this method for parallel
processing. Chang and Kim (1989) used this method to build a backhoe simulator based on a
works~tation.

Kim and Vanderplog (1986) used the concept of velocity transformations, used first by
Jerkovsky (1978), to develop an efficient O(N

3) method. A similar method was also used by
Huston (1990). Oarcfd de laldn et al. (1989) and Avello et al (1993) showed the potential of Kim
and Vanderploeg's formulation for parallel processing on shared memory workstations. This
paper uses the main Ideas presented In Avello et al. (1993), with slight modifications, and
presents a series of lusuative examples with open and closed.loops. The efficiency of the
formulation is tested by comparing the CPU times of this formulation with the formutation used
in the mulubody program COMPAMM.

2. Kinematic Analysis

In this section we present efficient recursive solutions for the position, velocity and acceleration
problems of multibody systems composed of an arbitrary number of joints and bodies, In
addition to a global (or inertial) reference frame, consider a moving reference frame ngidly
attached to each body. The position of the mulubody system is charactenrzed by a vector x.
composed of

* Coordinates r of some points located at the joints
Components u of unit vectors pointing in the direction of the joint axes

* Coordinates g of the centers of gravity
* 3x3 rotaton marces A relating the global frame with the moving frame of each body

m ~I,.
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Figure 2. Generic body in a tre-smrctre system

Let z be the vector off independent joint coordinates and base body variables, where F is the
number of degrees of freedom. For the sake of efficiency we will assume tat all the body ,

reference frames are initially parallel. If they are not. tse formulation presented in this section

can easiy be generalized by simply applying constant rotation marices to the transformations of
all the body vectors.

2.1. KINEMATICS OF OPEN-CHAIN MULTIBODY SYSTEMS

Consider a multbody system with tree structure. similar to the one presented in figure I. The
mulubody is composed of a base body and a series of branches that can have arbitrary size and
distribution and ar assumed to be composed of rigid bodies interconnected by kinematic joints.

The paths going from the base body to the distal bodies are called forward paths. A certain
body can be reached from only one body along a forward path. except the base body. One or
more forward paths leave from each body except from the distal ones. In other words, all the
bodies have a father, except the base body, and all the bodies have one or more children except
the distal bodies.

The position problem consists in finding the dependent coordinates x given the independent
coordinates z. This can be done in a recursive manner, satrting from the base body and moving
forward towards the distal elements In the different branches.

As mentioned earlier. x is composed of the coordinates of some Points and vectors located at
the joints, as well as of the coordinates of the centers of gravity and the rotation matrices
between the body reference frames and the inertial frame.

Figure 2 shows a generic body J that has an input point rA located at the joint between itself
and its father and one or more output points ryi, rj,. etc., located at the joints between itself and
its children.

Figure 3 illustrates a generic joint between body I and one of its children, body K. 'The body
points rs, and ra, corresponding to bodies J and K. respectively, are located at the joint
between 'the two bodies. Similarly. the body vectors u,2 and uk, belong to J and K.
respectively. and point in the direction of the joint axis. Some joints, for example the spherical
joint, do not have an axis and therefore the two vectors are not necessary. For the moment we
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Figure 3. Generic joint model between bodies J and K.

will maintain the two vectors and later on we will particularize and simplify the expressions forthe different types of joints.

The joint's offset is given by dsk, the vector from rJ2 to rit. The joint's rotation is
represented by the 33 rotation matrix A,*. Both dt and Aj depend on the joint variables ak
Assuming that the position of body I and the joint variables t are known, we can compute the
rotation mittx and the position of all the points and vectors of body K. The expressions to obtain
them are r4, +rs Aj(FI, - FA) + dst

Ak - Aj A,(

gk -rk, +Aktk -F ) (3)

rkigi,+Ak(?j-0Ik (4)

equations (4) and (5) s apply to y other point or vector of body r. faqutions (I) through()
can be used recursively, following forward paths, to solve the position prblem.

It is possible, and even convenient, to use a set of dependent veloctis and accelerations that
does not correspond to the derivatives of the position vector x. We will take as dependent
velocities the velocity of the center of gravity and the angular velocity of each body. Consider
again the generic joint of figure 3. Assuming that the linear and angular velocity of the body J is 4
known, we can compute the velocity of K as follows

i.,=r +'u +~, r)di: (6)

Wk (1+ Oik (7)
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T3

Figure 4. Opening a closed-loop system by cutting joints

rik,-k+(X (,k (0)

The corresponding expressions for accelerations are (2

gi, k x(g,; r r)+nk xo)* x(gk -r) (3

Fk, 0 +eoax(r, -gA)+wk xeo~x(r, -gk) (4

Uk iX Uk + iiiX O)k X U 1 (

These equations are particularized to ine different joints ini Appendix A

2 2. KINEMATICS OF CLOSED-CHAIN MULTIBODY SYSTEMS

Figure 4 shows a mulibody system wiih several cloned loops. This sysem can be transformed

into one (or more) open-tree systems by "cutting" some of the joints. The effect of the cut joints
is taken into account In the formulation by Introducing the explicit constraint equations

an open-loop system subject to the constraint equations of the cut joints.
Since we introduce some constrains equasions, only a subset of all the joint coordinates are

independent. Let F0 and F0 be the number of degrees of freedom of the open and cloned loop
systems. respectively (I e F0 in the actual number of degrees of freedom). If we call q the F~zi
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Body K

II Figures5. Genenic joint model.

vector of open-loop joint variables, only a subset of those vaniables arm independent. We call z

corresponding to the joint. The constraints are

Joint Costcit rtk teetbiheto

Hne r, -rk =0 U, UkO-

Spherical ri -rk .0

Clnrcl U) Uk -0 r-k u 0

Prismatic UUkO= ('Jr-xu,=0 UU =

Table 1, Constraint equations for cut joints

These equations mutbe formulated for all the cut joints to obtain the global system of

-V~x~))-O(17)

j 44

L___



A1
The vector of global posiuons x can be computed as a function of q. according to theexpressions presented in section 2.1. The system of nonlinear equations (17) can be solved using

the Newton-Raphson method, which can be written as

where the superscript indicates the iteration number. The iteraion process must continue until
the citiniint quations ar satisfied to a prescnbed tolerance. Once obtained the solution q. x
can easily be computed from the expressions derived in section 2.1 for open-loop systems. The
dienvation of the expressions for the Jacobian 4 q is illustrated in Appendix B through an
example.

The velocity problem can be solved In two steps. First. calculate the dependent joint velocities
q given the position vector x and the independent joint velocities z. And second, calculate the
Cartesian velocities of all the points and unit vectors using the open.chain multibody formulation
explained in section 2.1. For the first step we need to differentiate all the constraint equations
(17). that we assume holonomic and independent of time, to obtan

'Dq4=0 (19)

The value of 4 is obtained from the soluton of the system of linear equations (19) for the
known values i. The velocity of the remaining points and vectors can be calculated recursively
from the expressions denved in section 2.1.

The acceleration analysis can be performed In a similar way. Differentiating expression (19).
we obtain

(20)
Given x. x and the acceleration of the Independent joint variables z, expression (20)

represents a system of linear equations that can be solved for . Once computed q, the
accelerations of all the points and vectors comes from equations (I 1)-(15).

3. Dynamic Analysis

The virtual power form of the Newton-Euler equations of motion for a set of Nb interconnected

gid bodies is
YT(MY*C-Q) =o (21)

where M is the 6Nbx6Nb mass matrx. C is the 6NbxI vector of centn, sgal forces, Q is the 6Nbxl
vector of appled external forces. Yis the 6Nxl vector of Cartesian ac~zlerations and Y'is the
6Nbxl vector of virtual Cartesian velocities. These terms can be written as

MN C,JY J (22)

The 6x6 mass matrx M, and the 6xlvectons C,. Q, and Y, corresponding to body i can be
expressed as
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L 0 'Ji Ci- n, i (23)

where n is the mass, J the 3x3 inertia tensor expressed in the ieral referece frame. I the 33
Identity matrix, a,, the angular velocity, gi te position of the center of mass, fi the 3xtvector of
exteral forces and ni the 3xl vector of external toques applied at te center of mass. The value

ofJin terms of the constant inenia tensor of the body Ji in the body referefice frame. is
computeda,

Ji 
= 
Al1 1 A, (24)

velocities fromit, the Cani(sian velocities Y'must be expressed intersof the independentjoint

vai ,iblis" This transformation from one set of velocities to the other Is earned out in the next

sections for open and closed loops.

3.1 DYNAMICS OF OPEN-LOOP SYSTEMS

Following Kim and Vanderploeg (1986) and assuming that the constraints are independent of
tir-'. we can write a linear relationship between the Independent joint velocities 4 and the
Cartesian velocities Y of the form

Y=-R (25)

where R is a velocity transformation matrix of size 6NbxF. Extracting the 6 rows of body i from
expression (25), we obtain

Y.i 
=

lq (26)

where RI is a 6F matrix. From expression (26) we deduce that the jth column of Ri represents
the body's Cartesian velocity when the J.th joint variable takes unit value and all the rest are
zero. Therefore. the computation of R1 Is equivalent to computing different sets of Cartesian
velocities of the l-th body. The computation of R1 is presented in more detail in Appendix C.

Differentiating expression (26) we obtain

',R +Rq (27)

Extrctag from equation (27) the 6 rows corresponding to body I. we can wnte I'
Y,=Rjq+(Aq), (28)

which allows us to give the 6x vector (Rq)ia physical meaning. It represents the Cartesian

acceleration vector of body I when all the joint accelerations are zero. Therefore, the
computational cost of calculatng (Rq), is equivalent to an accelerauon analysis.

Equauon (27) and the virual form of equation (25) can be substituted into (21), obtaining

R
T 

MRq=R T
(Q-C)-R T

MRq (29)

which ishe final form of the equations of mouon for open-loop systems.

------- 7



3.2 DYNAMICS OF CLOSED-LOOP SYSTEMS

:Stmilaxly to what was done in Section 2.2. a system with closed loops can be studied as a tree.
structure system subject to constraints. To eliminate the closed loops one must "cut" one joint
from each loop and then impose the cut.joint constraints explicitly.

Let F0 be the number of degrees of freedom of the tree-srucmre systemonce the joints have
been cut. and q the cotresponding FI vector ofjoint coordinates. The components ofq am not
independent because they am related through the cut joint constraints. Let F, be the number of

" the degrees of freedom of the ilosed loop, system and z the FPel vector of independent joint
coordintes. A linear relationship between the two sets of joint velocities must exist and can be
wntenaa

q-R
=  

z(30)

where Rz is a F.xFv matrx. If the independent coordinates z are a subset of q. we can wnte
i*Bq (31)

where B is a F&.F. constant matrx composed of zeros and ones.
The matrix Rcan then easily be computed as follows by appending equation (31) to (19),

which leads to

(II.
B il (32)

Isolating l we finally obtain

(33)

which tells us that Rz can be computed as the last Fe columns of the inverse matrix.
Differentiating equation (33) we rind

q=-R i + Rz (34) i

Substituting equation (34) into the equations of motion (29) and premultiplying by Rl we obtainTM z ] (Q _)FTr(
M

A4
I+ R R

,,
z
) (35) i }

where R is the 6NPz F, maix

W-=RR, (36)

Expression (36) constitutes the set of Fc second-order differential equations of motion of the
closed-loop system

2.3 ALGORITHM FOR DYNAMIC SIMULATION

The aim of this secion is to present a general algorithm for dynamic analysis of open and closed.
loop systems that takes into account several efficiency issues. The algontm is as follows.

I2
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1. Define the topology of the mulubody system and label all the bodies. joints. points,
vectors and joint variables

2.Select Fc independent joint vartables and aaaign values to the position z and the velocity
1it timer

3. Calculate Oil and solve iteratively equation (18) for q and (l)-(S) forex.
4, Solve the velocity problemn through equation (19) to calculate q and (6)-(10) to calculate

5. Compute the open-loop velocity-dependent accelerations R.
6. Solvi the linear system of eqaatios (33) to obtain the matrix Rn. Calculate Rn*.
7. DO'PARi..LLL=i,NJ 7.1 Calculate the terms Mi. C. Qi and Rt

7.2 Calculate 1i by malaplyteg R1RIts.
7.3 Multiply -r Mi, NT(Q,-C, andrT(z)
7.4 Multiply (FT M1)(R4) n'T (M1ii.

8. Factorize IT MR in equation (35) and solve for ii.
9. Integrate (U~), to obtain (n.z),,,
10. Setr t- dtand goto step 3.

The DO PARALLEL statement used in point 7 tepresents the system-dependent directive for
parallelizatlon. This directive splits the iteration loop into subtasks and sends one or more
subtasks to each processor.

Thie most attractive feature of this algorithm as that there is a significant portotn of the code

that is subject to run in parallel. The parallel loop contains one ieaonper body. which allows

modrat sie poblmsthetypcalamount of code (measured in terms of floating point
opeatina tht my un n pralelIsbetween 50 ad7% otk ulavnaeo h oe

goal to to have the job evenly distributed among processors and to avoid havtng some idle
processors while others are overloaded.

An efficient implementation of the matt'x products requires that the sparsity pattemt of the
matces be considered. The matrices usually have wide portions of zeros that can be exploited to
speed up the computations. Funhetesore, the tedtr. 11" M R may have regions of zeros that can
be considered by using a skyline profile solver ,

4. Examples

4.1 5-BAR PENDULUM
Figure 6 shows a 5-bar pendulum wtth 5 revolute joints and 5 degrees of freedom. The length of
all the links is L = I mn and they have a uniformly distributed mss M = I Kg. 'The pendulum.
initially at rest, is left free and evolves under the effect of gravity g = 9.81 m/s2. The equations of
motion were integrated for 10 s using Shampine and Gordon's (1975) DE integrator with an
error tolerance of 1O'5. Figure 8 shows the x. yand coordinates of the point P. shown us figure
6.
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Figure 8 Coordinates of poin Pof the S-bar pendulum4

Tfhe CPU umes for this example obtained with the mulubody program COMpAmM and the
proposed method are summarized itn table 2.

4 2 BRICARD MECHANISM

The single degree of freedom closed-loop m~echsanism of figure 7 is called Bricard mechtanism. It
is essentially identical ti: the 5-bar pendulum seen in the previous section. except that the last
body is hinged to the ground. All the geometrical and inertial properties remain unchanged from
the previous seccion. The mechanism is initially at rest. It is left free and evolves under the effect
of gravity g 9 981 m~s2. The equations of motion are integrated for 15 a with the same error
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frotit and rear suspensions The full model (comprising the right half riot shown) consists of 25
ngid bodies and has 15 degrees of freedom,.6of them corresponding is the ngid body motion of
the chasis,4to the up and down motion of each suspension. 4to the wheel ottionand one to
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Figure I1. Topological graph of the full car model

the rotation of the steering wheel. The joint types are indicated in the figure by a character. R
means Revolue, U means Universal, S means Spherical. P means Prismatic and R&P means
Rack and Pinion. The numbering of the bodies corresponding to the right front and rear
suspensions is indicated on the figure.

The cu model contains several closed loops. To visualize tse closed loops in a clear way, a
schematic graph is shown in Figure 1I. The nodes are the bodies and the edges are the joints. To
turn the car model into an open-loop mechanism it is necessary to remove some joints or bodies.
The edges depicted In dashed line% correspond to the cut joints. The solid lines indicate the tree-
structure system. Instead of removing the 8 joints corresponding to the bodies 5'. 9'. 13' and 17'.
the 4 bodies themselves have been removed, which has the advantage of reducing the size of the
open.loop system. The mass of the removed bodies has been transmitted to the adjacent bodies
so that the formulation is consistent.

The contact between the tire and the ground has been modeled with the Calspan tire force
model (Bohn and Kenan, 1974)

The CPU tunes required for this simulation are presented in table 2.

4 4 CAR CRASH SIMULATION WITH HUMAN BODY MODEL

Figure 12 represents a human body model with 45 degrees of freedom. The degrees of freedom
are distributed as follows: 3 at the neck. 2 at each collar bone. 3 at each shoulder. 2 at each
elbow. 2 at each wrist. I for finger motion on each hand. 2 at the waist, 3 at each hip. I at each
knee and 3 at each foot. In addition, there are 6 degrees of freedom of the base body, which is
taken to be the hips. The 3. 2 and I degrees of freedom motions at the joints have been
represented with spherical, universal and revolute joints, respectively. For convenience, the
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tesa b 2l h a r mode l ae o foe ent4 oat re s edtrin s t motie o f the crvet a his
perpendicular revolute joints and spherical joints as three mutually prpendicular rvolute joints.

The driver is assumed to be seated in a natura driving position. To make the driver maintain
the driving position, torsional springs have been introdiuced at the joints. Before the frontal
collision takes place, the driver Is traveling at a consat speed of 5 ntis (IS8 Knh), The effect of
the seat belt has been modeled as a force element that restrans the motion of the chest and hips.

Figure 13 shows the acceleration plot of the driver's neck. CPU times are shown in table 2.

Examle COMPAMM Real-time Ratio
5.bar pendulum 176 1.1 160

Bncard mechanism - 8 2 I1.1 7.5
Full car model 2035 102 200
Car crash simulation 7854 142 553

Table 2. CPU times per function evaluation measured in milieconds on a single processor of
a SGI 4D/240 woekstation.
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Appendix A

This appendix particularizes the expressions (1)-(15) for the most common types of joints

Hinge: points r,2 and ri, . and vectors u ,. uk, coincide respectively The joint
coordisate z,k tss angle defined on the unit veictor us.

(A.2)

tt5,k I ZkUJ (A.3)

Cask = xAos + xJA6ui is U,. (A.4)

where the upper tilde denotes the 3s kew-oymmetnic matnix corresponding so a cross
product.

Prismatic: d15 has the same direction as vectons u,, and uk and its module is defined
by the Joint coordinate k

d, = x,. (A.5)

dati =ZCUj2 +015t151 "I. (A 6)

l,k ilkU,2 + 2zjkuo/, x 1, + Zkdsx u,, +s,5uJxkmm x u,i (A 7)

Ak=AJ (A.8)

= (i5k = 0(A.9)
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*Cylindrical: it is similar to she revolute joint. but with an additional rotation along the
axis defined by the vector u, . If zkand zkare the joint coondinates of translation and

rotation respectively,

AA AA,k(Z1.U,4 ) (A 11)

a'5  Z11U, + ZnO)j u, (A. 12)

cok 0
J ~ ~(A. 15)

cIrs z ku,, + 2za koi, x u,, + z' kw, x uj, + z',ax (tio, x u,4  (A. 14)

Si01A eJ'kui + z~cks, x Uj' (A 15)
Universal: the points r,~ and ri, coincide If el1 and e~k ace the two rotations about the
two axis defined by the vectors u,, and ui, respectively, then

(A 16)

A ,A(z,,.Ui)Ajk jk.a, (A.ll)

uk - Ak~k(A.I1)

41,, -(5s+z",tu, 2 )xus (A. 19)

= i~ ~U, ksns (A.20)

nsaSi+s Ju 4 54j Zkh+JAt (A.21)

Spherical: the pointa r, and ri coincide. Usinthslraa te p(e 1 2 .)
(which mast satisfy the constraint 104C21 + 2 =1 -) to define the three possible
rotationa

d~d, 1 ~a=O(A.22)

Ak = A, A,k(zjk p) (A 23)

sao1  2Gp (A.25)
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Figure 14 Calculation of the derivatives of a loop closure condition.

_C e e 2- l( . 6

-q e2  el * I

=Ok 2Gp (A.27)

*Floatng, the three translations oae defined by the joit coordinates z l. 2 and z 3 that
coincide with the coordinateo of point rk, with respect to a reference 4rae (m'. n * )
paralel to the inertial ones with its origin in the point r,,. The three rotations are
introduced in a way similar to the spherical joint

dj z k+ 2 n+3I
1kt+klJkl) (A.28)

,t ojm+z2 n +j3 k J (A.29)

d, Ik+ 2 n+31

Appendix B z8znzI(.0

The jacobian Oq of the constraint equations shown in table I can be calculated as

Oq =k xq(B.1)
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The matrix O* is derived in a straightforward way by inspecton of table I. To calculate 
0

q, it
is necessary to evaluale the derivatives of the points and vectors with respect to the joint
coordinates q. This r eds to be done only once for each type of joint since the results may be
stored in a joint library and used for all subsequent joints of the same type Observe that

aqs 8olVio (B.2) I

which means that the terms i Oq am par.Jal velocities (see Kane and Levinson. ,985) that may
be computed by calculating the velocity r', corresponding to an input zero velocity for all the
jot.. vanables except for qk - I

b Let us illustrate this with the example shown in figure 14. The figure shows a cut joint I
between bodies J and K. There is a hinge joint with a joint angle e1 on the left branch and a
cylindrical joint with a joint angle z, and a joint offset 4, on the right branch. The pamal
denvauves mentioned above are shown in table 3

dr, ddrk du
OzJ uix(r1 I) u xu1 0 0

a, 0 0 U.,X (r -r.,) U,,XUk
d 0 0 u,, 0

Table 3. Jacobian 
O

q for the example of figure 14

Appendix C

In this Appendx we present the expressions for the calculation of the submatrices R, of
equation (26). Each submatix Ri is of size 6Fo. where F0 is the number of degrees of freedom
of the open-loop system. Each column of R, is computed by giving a unit velocity to each joint
vanable and by computing the resulting body's velocity. If the body is on a different branch than
the unit joint velocity, the corresponding column of R, is zero. Likewise. the columns of R,
corresponding to the joint variables located further along a forward path are also zero. The only
nonzero columns of R, are those of the joint vanihles preceding the body on the same forwardpath.

We now present the values of R for the joint vanables corresponding to the most common
t)pes of joints. The number of columns, that vanes from one joint to the other depending on the
number of degrees of freedom, is shown on the lower nght past of the matrix.

Hinge Defined by point r, and vector ui[uo, (, -,l ,
U/(C 1)j

Prismatic: Defined by vector us 1

, 0 (C 2)

II
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1
CylndrTcal Defined by pont rs and vector ul

R, _[ul, (g-r,) u,[
L l 0 (C (:3)

SUnversal. Defined by point t, and vectors u, and uk.

Ri.u ×( , i-ux(g,-r,)

Lul1 uS "k J1.2 (C.4)

Spherical: Defined by point ri,
~R,=[ix(gi-r,) J-(gi-r) k.("-gI

i i k J~3(C 5)

where i, j and k are unit vectors pointing in the direction of the x, y and ineral axes.
respectively

Floating: Defined by point r,
R,:[ j k ix(g,-r,) J.(g,-r,) k×(gi,-,)]

10 0 1 6.6 (C 6)
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Efficient Object-Oriented Programming of Multibody Dy-
namics Formalisms

osuistut A mr Mechazuk
f Uoiversitit Stuttgart

Pfafewalrng 9
W-7000 Stuttgart 80
Germany

AsSTRACT. A class structure for the object-oriented, numerical language C++ is presented to
reptace the built-i scalar type doabl with a new scalar class it (scalar environment) Matrix-
and vector.classes programmed with the use of the scalr class ,t allow comfortable object-oriented
propgrmung and modifying of multibody formalisms. Because an instance of a se stores further
information besides the magnitude of a scalar number, operations with se's can he optirmed with
respect to multibody formalies. The number of floating point operations remaining after opti-
mization can be counted and an executable program is created, which execute only these minimum
number of floating point operations. This serves as a basis for comparing, modifying and optising
given formalisms with respect to the multibody system under investigation. As an example, an
implementation of the recursive formalism is presented in the paper.

1. Introduction

During the last decades & large number of multibody dynamics formalisms for different pur.
poses have been published. Especially the development of the recursive formalism (1), (18),
(7], (4) has shown the need for comparing the efficiency of multibody dynamics formalisms.
This has been done using different methods, e g. counting the necessary operations by
hand (4), (15), with the aid of a symbolic manipulation program [16), or by measuring the
CPU.time for one evaluation of the right.hand side (13). For a serial chain of rigid bodies
connected by revolute joints, Fig. I shows the basic difference between an implementation of
the recursive and an implementation of the nonrecursive method described in (12). While
the CPU-time of the recursive formalism incieases with Order(ei), i.e. linearly with the
number of joints n, the nonrecursive method increases with Order(ni

3
). The intersection

point is at about five joints. Surprisingly, this doesn't hold any more for systems with
parallel tree structure, i.e. sytems where the number of branches is close to the number
of bodies, since the nonrecursive method used here for the comparison (12) also shows an
almost linear behaviour. Thus, for many practical applications an optimized nonrecursive
method is faster than the recursive method,

_ _ __-.- 9
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The minimum number of floating point operations are based on very special optimizations,
which are only possible for the benchmark system used, i.e. a serial chain with rigid bodies
connected by revolute joints. These well-known results show that a multibody system
program can be made more efficient by cl.,osing an adequate formalism. As Fig 1 shows,
the efficiency of a formalism depends strongly on the system it is applied to. Unfortunately,
there are only a few comparisons for some formalisms on only some benchmark problems.
To find an optimal formalism for a given problem, it would therefore be helpful to have a
better comparison of formthisms on a wider variety of systems and to have an environment
to program and modify comfortably formalisms and to apply them to a particular system.

One answer of computer science to program and modify quickly and savely large and
complex algorithms like multibody dynamics formalisms is to use object oriented program.
ing (OOP) [31, There is a lae potential to do this in multibody dynamics on different

levels:

* OOP on the system level: description of the given system with objects (bodies, joints.
coordinate systems, subsystems etc.),
OOP on the formalism level: defining kinematic and kinetic methods for the objects
introduced on the system level,
OOP on the linear algebra. level: matrix and vector operations,

OOP on the scalar level.

Since there are already objects in multibody systems, OOP on the system level has always
been done. Recent Investigations consequently use object.oriented models for the database
to store the system information f1l. Using OOP on the formalism level is more difficult
and a current field of research [9], 110]. OOP on the linear algebra level is quite common,
there are already commercial packages available. There are several methods to do OOP on
the scalar level:

Using the built.in scalar types like double in C++. This is inefficient. For example,
when programming the recurive formalism using vector and matrix notation, the
numbers of Fig. 2 can only be achieved by taking care of zeros, ones, constants, as
well as unnecessary and equal operations and so on.

0 Using a symbolic manipulator for scalar arithmetic and an OOP-language for the rest.
This is uncomfortable to program because of the two programming packages.

* Using special objects to do scalar arithmetic optimized for multibody formalisms.
This has been done e.g. by SAYEL in the program AuTosIM [14). Since AUTOSIM Is
encoded in the numerically less efficient language Lisp, this requires again another
compiler to run the final program.

The language C++ c:..ms to be an efficient numerical language and to allow object ori.
ented programming (6]. This paper describes a way to do optimized scalar arithmetic
in C++. An algorithm programmed with newly introduced scalar objects will be as.
tomatically optimized with respect to a multibody dynamics formalism programmed in
vector and matrix notation. The paper describes first the programming concept. Second,
as an example, an implementation of the recursive formalism in the form suggested by
BAtANOL/JoHANI/OTTR (4] is described.



2. Object oriented environment for. optimized scalar algebra in C++

The scalar types float or double of C++ don't take care of special information which would
be necessary to optimize a multibody dynamics formalism programmed in matrix and vector
notation, Even a standard optinuzer isn't capable to do this to a full extend. Important
optimization information of scalars axe

the origin of a number: constant from file, internal constant, internal variable, input
I f variable from integrator, integration variable,

• special constants like zero or one,
9 the history of operations, which ane necessary to calculate a number.

Therefore, a new class se has been developed, which completely replaces the build-in scalar
type double of C++. An instance of se references not any more a number itself but instead
all information to optimize operations formulated with se's. All standard operators have
been overloaded, so there is almost no difference between programming with doubles and
programming with se's. One advantage of using overloaded operators is that there is no
need to write a scanner and parser as In a symbolic language, since the scanner and parts of
the parser from C++ itself is used (8). The basic class structure is taken from a simplified
model of a macro-assembler or compiler (8), see Fig. 3.

Mo.i shst wss-. ers'rI r-er.m

op- WAa iiSywb.1s OPNUMbe'ss

osa mi isstorsas

Figure 3: Class structure of the scalar programming environment

The result of running a program formulated with the scalar objects ie will be a list of
operations, which can be casried out immediately by interpreting it or with full speed after
another compilation step. The rain advantage of the list of operations together with the
special information stored for each scalar is the possibility to perform local and global
optimizations.

62



Local optimizations result immediately from one operation and its operands, e.gf O-z-O,l I.... z, or ;.b- a-.

* Global optimizations result from information about the complete hst of all operations.
At the moment

- elimination of equal operations,

- elimination of dead end code,

- separation of operations with constant results, and
- separation of operations only used for report

is implemented.

To simulate the forward dynamics of a multibody system, an integrator-fdnction calls very
often the right hand side of the equations of motion. At best, the whole right hand side
is programmed using the newly introduced scalar clas se. Usually less often than the
integration variables, report variables are calculated at desired timerteps. The scalar class
se distinguishes between an integrator variable and a report vanable. All operations to
calculate only report variables are separated and carried out only if necessary. There has
to be an interface between the part of the program written in convential C/C++, e.g. the
integrator, and the algorithm, which is programmed using the scalar class se. This is done
with the interface variables for input, output, and report which are se's and global variables
at the same time (see Fig. 4).

5 5

Figure 4: Interface of oclar environment so sorrounding program

d ;b-



After the list of opera:lons has been optimized, the operations can be counted. Thus, the
result is the minimum number of floating point operations together with an executable
program which runs with this minimum number of operations.

3. Example

The previously introduced method is now applied to a benchmark problem. The forward
dynamics of a serial chain of n rigid bodies, connected by revolute joints, is solved with the
recursive method, see Fig. 5.

00

0

Figure 5: Benchmark system

The recursive method can be derived from the locally formulated equations of motion [17).
Sixdimensionl notation will be used, where the 3 x 1-velocity s* and the 3 x Iangular
velocity w of a rigid body are combined In the 6 x I velocity v = ( Ti)T. Similarly
S3 x -force ;' and 1, 3 x 1-moment io acting on a body are combined to a 6 x l-force

fs = (z,.)
T. 

With the symmetric, positive definite 6 x 6 mass matrix M, the Jacobian
H, the joint variables 0, the sixdimensional joint reaction force f and the sixdimenuonal
force g, which collects the external, applied forces nd moments and the gyroscopic terms,
the equations of motion are

!M)VJ- f, + JG h r h = g, i= = ... n

ii -45%,- Hji: = y, , j=l,.., n
HTI, = 0 , j=l,...

The index '"ydenotes en arbitrary body in the chain with a possible predecessor, indexed
with "i", and a possible successor, indexed with "k". The matrix

transforms the sixdimensional velocity of body "s", ,u,, with respect to reference point 0.
to the same velocity of body 's", ,c,, but with respect to reference point 0, whe-e he
distance from 0, to 0, is di, To simpli'y notation, the left lower index for the referent"
point is omitted, if identical with the right lower index for the body. These equations of
motion can be solved recursively [4), [171, see Fig. 6.
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*Projection: forj n,..,.2 do

*Solving for root.tt=(~,~-H(,-ii

*Backsubstitntion forj =2,. nodo

i= (HrMHH(g, -MjOWei+71))

Figure 6: Recurnive solution of equations of motion [17]

A very efficient computational scheme to solve the equations from Fig. 6 in given in 1IS],
afe Fig. 7.

*Projection: foi = n... 2do

V) = Mjilj Dj =(HJVj)-I
F1  c;V, D,.win= Tg,

gi D, = MIN+ li- -gi

At = D ii-FT MPi G

Fiur Solvi rirot <fo I1do

.Bachoubstitution: for j = 2 . a do

=Dj-. 1-FT'R,
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To implement the computational scheme of Fig. 7, a reference point and a coordinate system
have to be specified. This example follows the suggestion of BRAND L/JOHANNI/OTTER (4].
The local coordinate system K(O,,z, p,z2) as introduced by DENAVIT/HARTENBERG [5]
is used to express all magnitudes of body ".i" The Origin 0, is used as reference point,
see Fig. 8.

, a ,

SY ' \,\ Y ,'z 0

j

Fiur , xl,,jzj )

' yj. o, ;

Figure 8: Denavit.Hartenberg coordinate systems

To express a vector or matrix in coordinates of a coordinate system K(O,,z,,y,, :j, they
will be 1,tnoted with upper left index, e g. I = ('rT, 'WT)T. The trasformation matrix
'K, for sixdimensional velocities and forces between coordinate system K(O,, z2, y', z') and
K(O,, z,, Y., z,) consists therefore of the known 3 x 3 orthosormal transformation matrix7""

v= :'K lv t ; 'K,= ( 'T. -o

The most critical part with respect to efficiency of the formalism is to transform coordinate

system and reference point of the miss matrix Mj
p 

and the force g from K(0, z, , z')
to the previous body K(O,, z,, y,, z,).

:M. = :M,+ G"T(,K, )M ,K
T

) G G, . ,. .r
T

:9, = :g,- ; G'r (,K) ;, )

An efficient procedure is to do it step by step across the intermediate reference frame
K(O,.z,., .,z.), since then a maximum of zero- and one.operations aie exploittd. It
can also be shown that it is more efficient to first transform the coordinates and then the
reference points, i e.

:M,= :M, +,:'G {,K" {';G {..K, ,.Ki;G) K")
.

'a},:

-: , = : ,. G.T K,[";';.'. {,.i [i})fP

:g.

k6



Most parts of the formalism can be programmed directly in six-dimensional vector-notation,
because the previously described scalar environment will take care of zero- and one-opera-
tions. However, for the previously described transformation operations, it is more efficient
to decompose the six-dimensional operations into three-dimensional operations and write
special, optimized methods for the three-dimensional coordinate transform, %ions, where 4
the different reference frames are just rotated about one coordinate axes. One example is
the coordinate transformation between K(O,zy,z,) and K(O,..,.,p,.,z,.) for a 3 x 3
tensor A.

"A =i "71 JA i.Tj

in$ cogO hj all air : s'3 I -s.inO ct 0
0 0 1 allis32ass 0 0 1

as + co$ h all+am u-cshl 0isiG3cos G 211
u s+sia$ hi al l - lit$ h i su 013 lsss + G 0

u31cos -assnO usssasG+ss¢.o, as 3

With hl = (all -42)CosG-(at2+u2I)sin, ha = cosOhl, he = snOhl the transformation
can be achieved with 11+ and 12*, besides 2 trigonometric function evaluations. For a
symmetric matrix A, thi. reduces to 8+ and Ss.

To avoid the transformation of the graviational forces from coordinates of the global
reference frame into coordinates of the local reference frames of all bodies an important

optimization of the formalism is to fictively accelerate the first body instead of adding
gravitational forces [4], or. a little more efficient, to fictively accelerate the second body
ald add gravitational force to the first one (15). Of course, if there are any springs or
dampers between bodies, this will be useless. Additional minor optimizations can be
achieved by moving the global reference frame to K(O,ziyi ,zI) at t = 0 and to de.
fine K(O,,zy,,,z ) in a way that 0, = 0(,,)* and the vector from 0. to the center of
mass of body n becomes p, = (.,0, *)7. Combining the previously described optimizutinus
with the self-optimizing scalar environment, table I shows the minimum number of oper-
asions (without 2s n trigonometric functions). For n > 2, the expected O(n) behaviour

S " + - i

1 8 1 2 1 122 106 2 48 22 176
3 309 8 163 84 564
4 519 14 296 146 975

5 729 _ 20 429 208 1386 I!
Table P Minimum number of floating point operations

of the recursive formalism can be found. The minimum number of operations for n > 2 is
41In - 669 which is faster than the number 470n - 420 reported in [4), slightly faster than
the number 432n - 688 in [16], and faster for large systems than the number 428n - 737
from (15].
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4. Conclusion

The last years a large number of misitibody dynamics formalisms have been published and
some attempts have b n made to compare them with respect to efficiency. These compar.
isons have shown that there is some potential to make a program faster by choosing the
optimal formalism. The comparisons also have shown that the maximum efficiency of a for.
mallsm depends on the nultilbody system It is applied to. However, only some formalisms
were compared on some benchmark problems. Furthermore, the compared formalisms have
been strongly optimized under assumptions, which are not always applicable to more prac.
tical multibody systems. A better way to choose an efficient multibody dynamics formalism
would be to apply a larger number of formalisms to a multibody system, compare them and
select the optimal one. This paper describes an object.oriented programming environment
in C++, which allows comfortable programming and modification of formalisms. Thus,
a larger number of formalisms can be applied to a given system in reasonable time. To
compare formalisms, they are automatically optimized and the floating point operations
are counted. To verify a particular formalism, an executable program is generated, which
runs with the minimum number of floating point operations.
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SPARSE-MATRIX GENERATION OF JACOBIANS FOR THE OBJECT-ORIENTED

MODELLING OF MULTIBODY DYNAMICS

A. KECSXEMETHY
leheist Meckstroask

Useru it Dsuierp

W.4100 Duubut-g I

ABSTRACT. Dioesed is thus pape isea aem method for the gsneation of acobaa inatoin" his

Particularly donsoed for use in oltjort-oneted modellbup of multihody dynamiecs based on thetmoimo-
element opprooch. The method starts from a deectipeois of tnultibody hinematics as5a settse of geoneralZ
mappias, between mud"fht. from, which, the oerll Jacobina reults - via the chain rule - ma sequence of
rmstx products. For those smsanaee ame sparse-matsix scheme is eusgsted. Thous elemests mre, hessdm
tross, ste .oell-hs spatfal trasformationsmatafceseand the local Jocohesa of the individual transmision
elmeuts. Ittis howhow the %Am approache for claisof Jacbiass rootcssebe iewed as
partscrular decompostious soA multlpliratlos schemes of the spsaue-matricas discussed ahoien. Fuorthermore,
iwo se. schemes ore derive wich may be edvatgoe for dynamics calculations. A comparison of
onripstatleos time for the Jacobiwsbssdl generation of dyseulcal equations, ad other methods (compositeo
sid body method. wrcrve methods) is caruted out with a C++-ilmeasetaisoi of a Particular object-

oneosd modeliag of maubody dysmsam

1. Introduction

The modelling of multibody dynamics has several applications in industrial engineering,
which alltogether aism at reducing costa in development and production. A topic of particu-
lar tnterest is the on-line simnulation of the kinematic and dynamic behaviour of mechanical
systems: by means of this, the designer can obtain a better understanding of the influence
of relevant parameters in the system, as well s precise quantitative Information about ef-

*fect$ which are difficult to estimate due to inherent nonllnearities of the system. For the
simulation of a mechanical system, first the underlying mathematical equations mutt be
stated, a task which, due to its complexity, can he carried out for even modestly sired
systems only with the help of computers and specialized multibody programs. After two
decades of research in this field, the issues which have prevailed all turn around the topic of
speed. Currently, three different facets of this notion play a fundamental role in multibody
dynamics: (1) speed of mnodellrtg, by virtue of which the design process can be better in-
corporated Into the very short cycles of the modern production process, (2) rurt-time speed,
Which allows to use the models for animation, as hardware-in-the-loop components or as
black-boxes in complex computation schemes as e.g. optimization and parameter estima-.
tin, anid (3) speed of br-oadenitg and r-desigri programsminug pnocesses, which it the main
factor in applications in which the underlying equations constantly have to be extended
and methodologies from different disciplines have to be combined to cope with the given
problems, as it is the case e. g in the field of mechafronics. In the beginnings of multibody
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research, the emphasis was put mainly on the first of these aspects (Andrews and Kesavan
1975, Chace and Smith 1971, Orlandea et al. 1979, Wittenburg 1977. Sheth and Uicker Jr.
1972). while later in the eighties the rising complexity of applications forced the researchers
to develop more effective formalisms. These arose first in the field of robotics (Featherstone
1987, Walker and Orin 1982) and carried over to general-purpose programs (Brandl et al.
1986, Garcia de Jal6n et al. 1986). The third issue is a topic of growing importance, be-
cause of the increasing necessity to amalgamate methods from different branches of science
in order to be able to solve modern problems adequtely. However, surpri.ingly almost no
attention was paid to this issue until very recently.

The present oiject-onented modelling of multibody systems arose from the demand for
efficient, "hand.tailored" programs which are suitable for a robust and fast simulation of the
dynamics of complex mechanical systems, u for example vehicle dynamics. In the approach
introduced in Kecskemdthy and Hiller 1993, the multbody system is regarded as a collec.
tion of independent 'intelligent" objects which take care of specific tasks autonomously.
This allows to design problem.specific programs basically in the same way as preparing
the input file for traditional self.contained programs. The objects are executable and can
thus be incorporated very easily in superposed tasks, a property which makes them ideally
uited for multidisciplinary projects, In this paper, the intuitive approach is extended to

cover also efficient implementation techniques for Jacobian generation and composition.
The structure-dependent Information is described by a special form of sparse-matrix mod.
elling, and well-known methods from sobotics are incorporated Into the general procedure.
Also, some new computational schemes are derived which offer new possibilities for effi-
ciency optimization in applications Involving dynamics. The rest of the paper is organized
as follows: In Section 2, the basic ideas of the present object.oriented modelling will be
presented. Section 3 contains the particular modelling of Jacobians mentioned above, and
Sections 4 and 5 encompass the main results and the conclusion of the present investigation,
respectively.

2. Basic ideas of the proposed object-oriented multlbody modelling

Object.oriented programming sends itself for combining efficient solution techniques with
intuitive interfaces because of its ability to hide complex data and operation schemes behind
plain terms (Booch 1991), just about the same way carefully introduced notions help to
understand - and implement - complex relationships in mathematics. The key issue in
object-oriented programming is not the implementation part - which is feasible under any
of the current programming languages - but the design of an appropriate decomposition

of the physical system into physical objects whose behaviour can be mapped as directly as
possible to corresponding executable programming modules. A crucial issue in the design
process is whether the objects reflect more the details of the particular implementation

at hand than the inherent physical properties of the system being modelled. This dis-
tinguishing mark is most appropriately characterized by the notions of "data.driven" and
"responsibility.driven" approaches.

The traditional practice in program design is the data-driven approach. Here, the oh.
jects are defined as encompassing units of the data structures eoeded by the algorithms.
This can facilitate the implementation of a particular methodology substantially. However,
because of the dependency of object definition on its implementation, :he objects are not J
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A,

only dependent on its intrinsic behaviour, but also on issues such asprogrummsig style,
omier features, etc. and thus for maypeople the advantaes of object-oriented program-

mi4,do not become apparent. In contrast to this, responsibility.driven approaches view a
program as a collection of esther active or passive entities which are endowed with enough
"intellhjene" to carry out tasks - their so-caled " sponsibililes" - rather autonomously.
A particular model in this setting is the "chent/server model" of Wirfs-Brock and Wilker.
son 1989: the tasks in a running program reflect here typical transactions of everyday life,
where a serverperforms actions requested bj,a client according to a specific contract, the
client not having to be informed aboutcmore details ofthe procedure or about the tool& or
approach Is that, after, crrying out the modelling, an intuitive programming environment

results "ih corresponds in a high degree to conventional graphic user interlaces used ini CAD enviioimenuts for the rapid prototyping of multibody systems. Thus, there is almost

no penalty for using programming tools rather then graphic user interfaces, but a high gain
in modularity and further applicability to further tasks. The crux of this approach is to find
a particular view of the problem which indeed facilitates the dissection of a physical system
into neatly defined, implementation-independent "clients" and "servers". This section gives
a short overview of a particular method of achieving this representation in order to make
the subsequent expositions clearer. The nterested reader is refered to the more elaborate
expositions of this subject in Kecskemithy 1993 and Kecskemithy and Hiller 1993.

2,1. OBJECTS IN MULTIBODY SYSTEMS-2 'r'
"// "'" i")

tranmson elements actuator variables ref'eren¢e frames

fromuaeseto iObjects in muidbd ndretunorato

The key idea of the proposed modelling is to regard the multibody system as a collection of !

kineloststn ~ oneeen hc map motion-, force. and msuss.reiased information

a bout position, velocity, acceleration and load at an arbitrary location. Conceptualy, the •
, mulbodysystem is obtained by attaching or "plugging is" specific copies of state obJects I
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to the in-,and outputs of the transmission elements (Fig. 1).
The state objects are subdivided into scalar variables and spatial objects. The "spatial"

state object enimbraces'informaition'about the motion of a reference frame X with respect
to animplicitly definedreferenceframe Ki, as well as about the load being apphed to
the origin of5 . The motion information is comprised by the orthogonal rotation matrix

4 jR, transforminzgvector components from X to Ko0, the radius vector r from the origin
of; Kio to theoriginof I ; the angular and linear velocity ws and v, respectively, and
the crreponding acceleration~terms, i and a. Besides this, also the force f and the
torque r, ,biingapplied~to the frame are stored. Free vectors v, a and r are assumed
to be measured atithe origin of, C, and all vctors tobe decompoed in K. For notational
convenience, angular and linear components f velocity and load are collected in twist and
wrench vectors (Hunt 1990) 1 = (e

T
, ,T]T and w - h.T, T]T, respectively

Scalar state variables 0 serve as actuator inputs for joints or as outputs for sensors

performing scalar measurements. They also integrate Information about position, velocity
and acceleration as well as a load component describing the generalized force related to
the variable. The sig of the latter is defined such that under a virtual displacement 60
a positive load Q0 supplies energy to the system. By abuse of notation, we will refer
to both the value of the variable and to the complete set of its kitetostatical information
(Le, position, velocity, acceleration and force) with the same symbol 0. However, under
computational aspects it is wise to explicitly discern linear and angular variables whose
values lie on the real line R and the circle S

1
, respectively. This differentiation is observed

in some cases below.

A basic kinetostatic transmission is capable of carrying out motion tmnsmision and

forte transmssion (Fig. 2).

Position
P j Velocity

& ---. II [-----i Acceleration
_q Force

Figure 2: A simple transmission element

The operation of motion ntirnusion consists of the three sub.operations

position:~

velocity: j Ji; J#= ; ,()

aceeain h&1+4& .
where I E , R' , and J# e R

x
"' is the Jacobisn of the transmission element.

Under the assumption of an ideal transmmion element, i.e. one that neither generates
nor consumes power, a force-transmission mapping can be defined from the equality of

virtual work at the input and output of the transmission element,

, -r~ _ = 6,?_Q, .
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After subsituting 6Y ' .6g and noting that this condition must hold for all 6! E R",

one obtains the force transmssoioui function

law _q ~ ' (2)

Note that this force mapping is directed in opposhte diresetion to the motion transmission.
This property is quite general and can be verified in many appli 'ions (e.g. Luh and Zheng
1985).
2.2. GEOMETRIC MODELLING OF fRlA:TSMISSION ELEMENTS
A general transmission element can he modelled mathematically as a mapping from a
general "input" manifold X to an "output" manifold X1 (Fig. 3).

-- V, ,,

a'i

Figure 3: Mappings hetv-e. two ifolds

The model of a manifold is used here because it Sivwu a ratans of considering conibina.
tions of spatial and scalar state object- sat Angle g-owei-ic tuitities

X K x -- x R x...x R xS x ... xSi (3)

opie a Copis~ -,t C010e

where six is the number of reference fraries. rii ?is.sd n,. are the number of linear and
rotational variables, respectively. Given i maspping r. It-X', z E X .- z' = V(z r) E
X', the differenstial mssp or push forward function to. u'ir n rgent vectors v, in the
tangent space T. onto tangent ..ectors ,, Po the tangent space r, . Thin mapping in
formally defined by (Choquet.Bruhat and Dr.Witt-Morette 1989)

W. .=dC(t) W V, d d(,p(COt)) (4)
dt dl t

where C(t) is a general trajectory on X and C(t) is its image under W.
In differential geometry, an additional geometric object is defined which iu the linear

mapping of tangent vectors to the set of real numbers. Such objects a' , denominated

cotangent vectors, span a cotangent vector :oace T, of same dimension as T, .Associated
with ip, there emoats a function ip* which maps vectors a' A. the output of 7 to
corresponding vectors a at its input. This mapping, denominated thse pull.oack function,

is defined by



By. regarding the operation of computation of virtual power as a linear mapping of tangent
vectors to real numbers, it is easy to verify that cotangent vectors correspond to forces and
that the pull-back function models the force transmission (Kecskemithy 1993).

2.3. CONCATENATION OF TRANSMISSION ELEMENTS
By the manifold analogy, chains of interconnected transmission elements can be modelled
ab composite functions. Ruinm this modelling, the laws for Jacobian generation simply resul~t
as a consequence of applying the chain rule. For example, for the sequence of two mappings
f and g in Fig. 4 the following relationsheps a obtained (von Westenholn 1981):

Figure 4: Composition of mappings

position: = Poe (forwards)

tangent vectors: W. = (gof). = g.f. (forwards) , (6)

cotangent vectors: sp' (gui)" = f'sg (backwards)

Note that, in general, the operators in Eq. (6) are applied from right to left, as in (g o f)(z) n
9 (')) However, It Is common practice in kinematics to view sequences of transmission
elements as in Fig. 4 as on~atentations starting at the inertial frame and moving from left
to right as one proceeds to the tips of the chains. Thus, in the functional notation the
ordering of transmission elements is reverse to the ordering of the 'kinematicalr notation.
Also, it is interesting to note that for the force transmission the elements are again traversed
in the reverse order to the motion transmission sequence.

A general composite transmission element is modelled as a chain of simpler transmis.
sMon elements which can be elementay as e.g. links, joints etc., but also more elaborate
subsystems such as closed loops, wheel suspensions or complete control mechanisms. This

has no effect on the definition of the basic mappings, which are just a concatenation of
the corresponding mappings of the components. However, for computational efficiency it is
necessary that the structure of the interconnection structure is also taken into account in
order to avoid redundant operations in the calculation of products such as in Eq. (6). This
is accomplished by the method discussed in the sequel.

3. Modelling of Jacobians

The concept of the transnussion element introduced in the previous section gives a means of
unifying the different approaches for Jacobian evaluation used in multibody dynanucs. In
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this setting, Jacobians are regarded as the differential maps of the underlying transmission

functions, i.e. functions transporting tangent vectors at the input to tangent vectors at the
output of the transmission elements. The basic idea of the approach is that, given a chain
of transmission elements as shown in Fig. 5, and defined by the composite function

-P .- o1 = ' .- W1(.0 (7)

the corresponding differential mapping is obtained, according to the chain rule, as

o. iii S,. o .'.:. o ,,I. ,(8)

where the w,. are the differential maps of he individual transmission elements.

Figure 5: Concatenation of transmission elements

For simplification of the concatenation operation, it is advantageous to merge all isput
and output manifolds of the Individual transmission elements into one global manifold and
to regard the individual transmission elements as mappings within this space. Then, the
tangent spaces of the inputs and outputs of the transmission elements are all identical, and
the overall Jacoblan results from a composition of sevesal linear maps Ilk - R, where

N is the dimension of the resulting global manifold (Fig. 5). In the following, a method
for the efficient computation of this kind of composition is discussed.

3.1. LOCAL STRUCTURE OF JACODIANS
For the analysis of the structure of Jacobians, consider a typical mechanical part of a general
nultibody system - here denominated a 'mechanical component" C, - consisting of a

series of movable rigid or deformable bodies mounted on a floating base (Fig. 6). This object
has as inputs the motion of the reference frame Ki of the floating base, as well as a set
of Ic. internal variables 0) representing the (independent) generalized coordinates (e.g.

joint variables or modal coordinates for elastic deformation). The outputs are conformed
by frames attached at places of interest or further couplings to the moving bodies.

Regarding this object as a general mapping, the differential mapping transports two
"types" of tangent vectors: those related to rigid-body motion - i.e. the 'twet" - id
those related to the generalized coordinates - i.e. n-tuples in a linear subspace V C
R

1
-' . Because of the lnearity of differential maps, these two contributions can be treated

separately and added together subsequentially.
First, consider the tangent vectors related to rigid-body motion. For these quantities,

four specifications are necessary:

(1) the reference frame K, whose motion is measured,

L7
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111
IX 

X,

|I Figure 6: Model of a mechanical component

[ (2) the reference frame X, with respect to which motion is measured,

(3) the ref-rence frame IC, (fixed with respect to £ j I whose origin 01 is taken as
reference point for the Uune velocity of Xj,, and

(4) the reference frame X& In which the vectors are decomposed. i

These four Indices a~re arranged in the geneal case zs ']("However, for Most applications,m

tenmeofindices ct be reduced, becuse (a) the reference frame IC, Is moctly the
inertial frame, and (b) the reference point for the velocity is frequently identica) to the origin
of the reference frame whose motion is measured. Thus, a reduced notation nvolving only
the indice j and J; u introduced above is used in the sequel.

The transmission rf twists involves a linear transformatin of the twist IL, at the input
of the mechanical component to a twist ;jj at its output. Here, equal indices for the frame
of decomposition and the current m~oving frame are introduced for further slimplificationk Of
notation. This general transformation can be written compactly as

% i - l , , (9)

where JX, is the 'satial tionsformation matruz"

Here, 'R, 4s th 3 u 3 othodoeal rotation matri transforrng vector components from 1C,
(4) ,ejiefrc vector e origin 0, torign decomposed frame X& (i

Th prtiurin case with k a nd the tlde is the weH-knoweoperator r constucti,
a sinw-symmetic matri out of a vector such that s z r x z.
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Concatenation of spatial transformations is achieved by multiplication of their respective
matrix representations, viz.

'N [ o5R (11) ,~k' x, I x,=,

I where

SR' = AT RI , (12)
, k , +I 'RT . (13)

Also, it is possible to decompose the general spatial transformation matrix in a par 1 X
involving pure translation (representing the change of reference point for the velocity) and
a part "X- invol 'log pure rotation (representing the change of coordinates)

JX'== [ ,f ; XP=-Z3 I R 0 T (14)
11 Z3 k

Note that here the radius vector ,r, and thus IP itself is decomposed in K,. However,

the effect of a pure translation can also be related to any other frame K, by means of

,1Jx x 'x= .XJ 5X i (16) "

In this notation, s marks the moving frame regarded, I the frame of decomposition, and
j the origin taken as the reference point for the velocity of Ki. For example, changing
the reference point from the origin Ot to the origin Oj within the same rigid body, while
mantatlning the frame of decomposition as Ki , is achieved via the transformation

= , . (16)

Next, the transmission of the time-derivatives of the generalized coordinates J3 to the
twist of an arbitrary output frame X , decomposed in a frame K , is considered, The
corresponding linear mapping is denoted as

stt= s(O , (17)

where kjIM represents the local Jacobian of the transmission element. Here, the indices
have the following meaning: t records which set of generalized coordinates 40 is being used,
I the frame Ki whose motion is measured, and k the frame o, used for decomposition.
For elementary transmission elements, the Jacobians are usually given a prons. In this
case, the frame of decomposition is identical to the output frame, and the Jacobian has
mostly constant coefficients. For example, a revolute joint turning K, to KX about z, a z1(regarded as component C, ) has a local Jacobta of dj

'
,(

) 
= [0,0,!i,0,0,0fr

T
, whle a

similar prismatic joint generates the local Jacobian I,(
'
) = [0,0,0,0,0,1

"
. For composte

transmission elements, the initially given local Jacobians are gradually "moved" up or down
the branches of the transmittion elements to calculate the effects of th- variation of local
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generalized coordinates in other places of the multibody system. Specifically, changing both
origin and frame of decomposition from K, to Kk is achieved with the transformation

kil.) = X J-40)J x, --X1j . (18)

Changing only the frame of decomposition from K, to Kk , or changing only the point of
reference from Oj to O,, result, respectively, in

j = x JM , (19)0

0)= . (20)

In this last equation, the general notation .JJ% indudes, besides the Indices i, ), k
described above, an additional index i characterizing the origic O used as point of

reference for the velocity of Kj .
Combination of twist and generalized coordinate transmssion yields the overall local

Jacobian. For example, from equations (9) and (18) the resulting local Jacobian for the
output frame X in Fig. 6 is

1 ixi , rJ.I I (21)

3.2. CONCATENATION OF JACOBIANS
Local Jacobian, in kinematical subsystems consisting of many dosed loops are most ef.
ficiently evaluated by applying hand.tadored formula& (Hiller and Kecskemithy 1989) or
automated symbolical manipulation schemes (Kecskemthy and Hiller 1992). However, for
series-connections of mechanical components, an automated approach can be stated which
leads to a near-miimum computational effort. This is discussed in the sequel for a sequence
of serially connected transmission elements as in Fig. 7. The generalization to general tree-
type structures of connected mechanical components is straight-forward and shall not be
regarded here.

Assuming that the mechanical components C, in the sequence are already modelled,
the local mappings 9!11: k,, 0(,

) 
- X,+ as well as the correspondig local differential

mappings , (.L, &)) - , are expected to be known. These local differential
mappings are now embedded in the global tangent space as discusse-s above. In this global

sparc.,. tangent vector has the structure V = 1iT . 1.... ,+i, T and for the
dierential mapping the function

SP.: V - V, = V. V (22)

implie" a sparse 'globalized' Jacobian W. consisting mostly of zeroes and ones For
example, the globalized Jacobian for the mapping p, in Fig. 7 has the structure-
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1 )C . ,-+ Ow lo

'x. 0 ... C

AK

(23)

The first ni +1 block rows and coins$ consist of quadratic submatrices of order 6 rep.resenting spatial transformations, while the last a block rows and colun& correspond tothe generallized coordinates of the components, the submatrices 1,, being identity matin.A ~ces of dimension fe, . It is interesting to realize that the structure of this matrix mirrorsthe three basic types of variables that asrise in the general transmission element: (1) inputoaus-ssk, characterized by non-zero elements appearing in the correspondig sglUU abovethe diagonal (in this example K. and 0 ), (2) output vaesbes, distinguished by non-zeroentries arising in the corresponding ta (in this example KI), and (3) through esnsbles,featuring only zero elements beside the diagonal in the corresponding row and colozan.With this structure, the Jacobian of a composite system is easily established by multi-plication. For example, with the globalized Jacobian of the mapping in, in Fig. 7,
X, *. . K, K. r-.. 0o) .) ,) - .

I. K,

I, o K,

0 ,,,,(24)

VI,). 4.)

the Jacobian of the composite function 7 is obtained as tbe product i,

......



,.y)

Figure 7: Concatenation of mechanical components

jpU) .9(j)., yielding

II

.- X,0 .. . kl . .

lx 0 ". .. .

i. =(25)

After ryeig out the substitutions

sX, = BX pUX , (26)

wre (2)

ne obtains again a lobalned Jaobian of the same octure as those in equations (23) and

(24). Note that in this derivation both the point of reference and the frame of decomproision
are tatken from the output framne. Alternatively, one may relate both the point of referrence
and the decomposition frame to the inertial frame, which is here assumed to be AZ,. Then

ewrepresentations of the V).are obtained via the transformations (28

B=dag{Is, ix,,... ,ix ... ,,,i ...,*, 
1,o. } (29)

Another approach is to use as reference point for velocities the origin of the corresponding
output frame, but as decomposition frame again the inertial frame Such a representation



is obtained analogously to Eq. (28) by substituting in Eq. (29) the terms IX, by IX,.

Similarly, the iepresentation using the origin of the inertial frame as reference point for the
velocities and the output frame as frame of decomposition is obtained by substituting in
Eq, (29) A()Xj' for 

5Xj. The relevance of these different schemes will become evident
in Section 4. For the moment, It is of interest to appreciate how different methods of
applying spatial transformations eventually lead to completely different schemes of Jacobian
evaluation.
3.3. SPAR SE MATRIX MODELUING OF JACODIANS
In order to take advntage of the spars structure of the globalized Jacobians in operations

such u the multislication discussed above, a particular scheme derived from well-known
sparse-matrix techniques is introduced. To this end, the general differential mapping is
decomposed into two parts:

(30)

The first part corresponds to the diagonal of W.
I. = diag{ .,(K5) s...... , .- (,,i) Is, Ij, .-... I,,. } , (31)

where o,.1 is a BOOLEaD variable characterizing output variables,

1 if sth reference frame is an output (32)
0 otherwise

and l/, is &A identity matrix of same dimension as the number of internal coordinates of
component C1. The remaining matrix C. now has very few elements, which can be stored
using a modification of the well-known sparse row-wise format (Pisanetzky 1984). This
scheme is as follows:

(1) In a field sjlants, store pointers to the non.vanigsing entries of matrix 0. (locl
Jscobians 1'4) and spatial transformations Xi) row by row. The order of the elements
within a row is immaterial, but rows must be stored in order of their appearence from
top to bottom.

(2) A field coluns contains the columns where the entries of elesa are placcd in

(3) A further field uj. holds the row indices of 0. where non-zero elements occur.

(4) Finally, the places in smjg and colmMs where new rows (of ., ) start are
recorded in a field row-pointers.

For example, the sparse-matrx storage "cheme for the Jacobian p. resuumg from Eq. (25)
would look like

s5 nts = I'X, , J AX,, NJ ,
, * ] :

:= [ nss, n s+,+ ++ +l, I +s+2,
r = 1,kjA

row-pointars = (1,31
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Thus, it takes only a few additional entries (14 elements, in this example), to store the
structure of the Jacobian. It should be noted that this information is basically equivalent
to graph.tho tic methods such as the adjacency matrix approach (Wittenburg 1977).
The advantage of this representation is that it leads directly to lghly optimized formulas
without ilie need of deriving them from more general notions.

We now study the effect of the decomposition (30) on the moltiplication of two differ-
ential maps.' Multiplication of all terms gives rie to five basic operations which have to be
carried out to obtain again the decomposition introduced in Eq. (30):

WC. = B. 
0 

W.. 4*I+ 11. 0A. + .+OB A (33),F OA. Fo (71).- •

By further scrutinizing these terms, one finds the following properties:

(1) This is a general sparue matrix product. It consists of a symbolical part, where the
storage scheme of the resulting matrix is created, and a numerical part, where the
actual calculations are carried out (Pissanetsky 1984). The symbolical part is carried
out only once at the beg!.nv!4g of the analysis, whera the numerical part is evaluated
repeatedly, but only for non-vanishing factors. For example, the numerical part of the
product in Eq. (25) indeed only implies the operations described in Equations (26)
and (27).

(2) Here, columns of C*. which are at the same time outputs of pA are removed.

(3) By this operation, rows of OIA. which are at the same time outputs of ipB should
be removed. However, because no two mechanical components can contain identical
output variables, 0A. and 1,, do not share rows with nonzero elements and thus
this operation is immaterial.

(4) At this place two spae matrices CB. o C*A. and rpo. o vI, are added. However, the
non-zero columns of O. OA. must also be non-zero columns of OA., and, within
these columns, the only non-zero elements are those corresponding to cas where an
output (row) of VA matches an input (column) of fps. On the other hand, the only
non-zero columns of ,. a Io,, are those which are also non-zero in O. , but do
not correspond to the outputs of j'A. Thus, there are no common non-zero elements
between CO.otCA. and Co.o 1 , so this term also does not give rise to "true"~operations.,

(5) Again, two sparse matrices OB. (IA. + A.) and rp. are formally added. However,

the outputs (rows with non-zero elements outside of the diagonal) of CB. * (J'1. +O A . )

correspond to the outputs of Co., which can not be at the same %iMe outputs of CA.*
Thus, OB. -(, + CA.) and OA. do not share rows with nonvanishing elements,
and this operation is also free of numerical effort.
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Thus, only the 'kernel" operation ( involving the very few nonzero entries outside of
the diagonals consumes computation time and it is possible to design automatic schemes
which have the same efficiency as hand-coded methods. A further appealing property of
this approach is that it fits neatly into the "client/server" model introduced above, and
that it is not dependent on internal representation details. Indeed, all that is needed for its
implementation is the support of two further functions 'do slbolic" and "do.numerics"
in extension to the basic functions of kinetoetatical transmission elements.

3.4. FORWARDS. AND BACKWADS-PR PAOATION
The general scheme for the calculation of Jacobians still leaves some topics open concerning
the eventual form of the operations. By studying all methodologies applied in robotics for
the evaluation of Jacobians, it turns out that three basic features determine the type of
a particular algorithm. Thes are (I) the reference point for the linear velocity, (2) the
frame of decomposition for the vectors, and (3) the sequence in which multiplication is
carried out. For the first two issues, typical selections are (a) the inertial frame Po , (b)
the body.fixed frame Xj and (c) an intermediate frame K1 located between the inertial
and end-effector frame. For the third choice mainly two alternatives are regarded: the

"Rackt,, ru-propagating multiplication scheme

= ( , .or . , ,_. ) . .....) o . (34)

and the ",orards'-propagating scheme
=: .. o ..... s~ ( s~o~,.)) .(35)

In the bsckwards.propating scheme, computations are basically performed from the tips of
the branches of the system to the inertial frame. Only the spatial transformations between
the tips and the intermediate frames X5 are evaluated here, and the local Jacobins are
then transformed in one step to the frames at the tips. In contrast to this, in the forward.
propagating schem6 also all spatial transformations between the inner frames, as well as
the representations of the Jacobians in all subsequent frames are evaluated. This is shown
in Table 1, where one may assume that ICs is an end-effector frame and K, is a base
frame. A good vehicle for the systematic treatment of the multiplication schemes is the

tx kju
1  

Index sequene

p! IX,+, l+lX, Xj+l + , k- 2,..... 1

.............. .... ........... .... ,2
ip! X-l -X1 -X-~/ 1  rt-l -2

Table 1: Intermediate terms of the forwards- and backwards propagation schemes

concept of the binary free (Knuth 1973), in which each node has either exactly two or no
successors. Nodes without succes$ors represent the 'leaves" of the trees, while a regular
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node represents an intermediate expression resulting from the prodrct of the left and the
right successor. In-the setting of the evluation of Jacobians, the leaves correspond to
the operations of "globaling" given local Jacinbans, while the regular nodes represent the
intermediate'products in a sequence of transmission elements. In particular, the backwards-
and forwards-propstgating schemes have 'very simple representation as a 'left-blased" and
a "right.biased" binary tree, respectively (Fig. 8).

W3.

a) backwards-propagating scheme b) forwards-propagating scheme

Figure 8: Binary-tree structures for basic multiplication schemes

4. Results
4.1. KINEMATICS
The discussed scheme for Jacobian generation has been applied to the kinematics of an
unbranched chain of revolute and prismatic joints, as it is typical in robotics. Of the
different possibilities of the combinations of reference point, decomposition frame and order
of multiplication, five corespond to known approaches from the literature, whereas two are
new and introduced here for the first time (Table 2). Another five combinations (the empty
fields) are not further analyzed, as their practical benefit is not evident. This is because
the reference frame Ki of Renaud 1981 lies approximately in the middie of the chain, from
where a forwards-propagatmg ,ompoition is started towards the ends of the two resulting
suhchains, and a combination with representations in ICo or X4 is too complicated.

For the methods described in Table 2, a comprehensive operation count was performed
in Krupp 1992. Here, only the results for a serial chain of n revolute joints - intermixed
with corresponding rigid links - is summarized in Table 3. For the calculation, the well.
known DENAVT.HArrNsERGc-parametriz&tiOn for rigid-body motion was applied. The
results are given both for the case that only the Jacobian of the end-effector (the frame at
the end of the chain) or also of every frame at the base of each link is needed. The numbers
in parenthesis correspond to a chain with n = 6. One can appreciate that, besides the
method of Waldron 1981, every method for calculating all intermediate Jacobins involves
O(n2) operations. Also, one can see that for the forwards-propagating methods, the
evaluation of the end-effector Jacobian affords the same number of operations as calculating
all intermediate Jacobians as well. Finally, note that Method I is most efficient when all

86



Reference point for velocity

F Vukbratvi~/ Method I
R oe of -Potkosiak 189 ______ ______

decomposition B 00/ Method 11
Schrsder_1983 ______ ______

Ko F Olsou/ Waldron 1981
ice tibble_1982 ______ ______

F: foada Xptgto B: bcwrarpgto

Table 2: Basic methods for Jacobian evaluation

needed. Similarly, Method H is most efficient when only the Jacobian of the end-effector

and a decomposition of vectors in this frame is needed. This shows that the new Methods
Iad h mt e interesting for dynamics, because in this cast the costly transformation of

inetiaproertes o te iertal ram isavoided.

Method '/ Owns/ Waldron 1951
Pokklak 979 Schrder 983 Ribble 1582

only 1 too, + 4+41 IG.-U T(%-1 76.-I? -7-126
csd~ictose( (532)* (4r:) I 438) (30)

sll 15 %+24% +4 53.,+3%n+26 4s. + 72. -I17 76a- 25

frai... (832) 1 (1372) (631) (330)
Method IR*sasd lost Method I I Method 11

osly 76--1 93 3. +34.-9 76.-40
esd~fctor (263) (673) (416)

nil e sisppesd 13.1+36.-9 240+35%,-40
trnsses (675)3134

Table 3: Numerical effort of the basic Jacobians evaluation schemes

4.2. DYNAMICS
An an application of the described method to the problem of generation of the equations
of motion, consider a branched system of links hinged to each other by revolule joints,
where a "ohaft" with two joints is connected to the inertial frame, at the end of which five
further serial chains are attached, four of them having three, and one of them having four
degrees of freedom. For this system, three basic methods for generation of the dynamical
equations where applied: (a) the compositeringid-body method of Walker and Orin 1982,
(b) the srtteulsted-body method of Featherstone 1987, and (c) the Jacobia-based method
described for example in Nikravesh 1988 Out of these, only the third variant shall be
shortly described, as the other two are most well known in the dynamics and robotics
community.
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For each rigid body Bi, its inertia properties can be assumed to be given with respect
to an arbitrary point Pi. Denoting by 1, the velocity twist of 51 at lj and by y. the
resulting wrench of all applied forces and torques at i with respect to P. , the principle
of virtual velocities (Kane and Levinson 1985) is

E [( . ip + ip. l = 0 ,(36)

where ni; is the number of bodies, and Sp, and k,, are the "sjsstsil" analogous of the
tensor of inertia mad the vector of coriolis and centrifugal forces, defined as

Or. r~ [4PS ,XeW1p , - . miwi i pso (37)
-i p.r, -J

and p~s. is the radius vector from Pi to the center of gravity Si of Si . By substituting

1, = JP~, 61P.= JP,i 6 (38)

where I = q, , IA' represent the (independent) generalized coordinates, and taking
into consideration the independency of virtual displacements 6j, the equations of motion

Iin minimal coordinates

f (39)

result, where

M~)= J~.J, M,&= '(ZP.jP. +jS), _qqi) = T p. (40)

With the notation

g = ig~....,p, . },(411

= (J p~~-~. ,..., PJ,~+s* . , 0,. ,O)T , (42)

the complete set of equations can be written compactly as

(43)

The implementation of all three methods was easily possible based on our existing
object-oriented programming environment for multibody systems named 'MUIBILE".

Method Times

jarticulatedody 0.521

'On =ApollsDN 3500

Table 4- Computation time for one set of equations of motion

Table 4 shown the resultig computation time for generation and resolution (determination

of generalized accelerations 1) of one complete set of equations of motions In this table. not



all possible optimizations (special treatment of first and last bodies in the chain, elimination

of operations involving zero coefficients contained in the local Jacobians) where carried ont.
However, all methods where treated similarly. Clearly, the Jacoabian method is the moet
efficlit one, even though the gain as compared to the other two methods is very small.
However, for systems containing many closed multibody loops, the advantage of using the

3. Conclusions

The proposed method for modellisglacobisss in multihody systems stabishes a unified and general
formulation which is also wellsuited for object-sested programming techniques. Thre underlying
differentislkgeometric interpretation gives a means of extending the concept of hinetostatic tras-
mission Ito more general notions while at the same time hiding the implementation details from the *
user. This renders an "easyto-grasp" intuitive interface, which is well-uited for rapid prototyping
of mechanisms and complex multihody systems. The novel spars.e matrix storage scheme introdocs
ancalterative approach for storing the interconnection structure of moltihody systems which is
"nearere to the formula leve then other graph-teoretic methods Finally, two new computation

varinto for the evaluation of Jacobians are presented, which consome lees operations than theset
published previously in the case that all vector quantities are decomposed in the body-fixced frames.
This makes the approach interesting for multihody dyoamics, a topic which shall be discussed in
more detail in the near future
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ABSTRACT. The ohject-oiriented modeling langoage Dymnols allows the physical modeling of large n.
terconoected systems based on model components from different engineering domaisrs it gererates

Cs asbolsc code foe different target simulators In this paper, a Dymola class library for the efficient
generation of the equations of motion for multibody systems is presented The library is based ona
reformulated 0(n) algorithm such that the algorithm is truly object-oriented This feature con also he
interpreted as. h ood graph oriented moncdeing of multibody systems Furthermore a new algorithm for a
certain clasi of variable hlr-netsre multibody systems is presented, which allows the generation of efficient
symbolic cods

I Introduction

Dymola [6. 8, 3, 41 is an object-oriented modeling language for modeling of large dynami-
cal systems. Models are hierarchically decomposed into submodels which are connected in
accordance with the phyitcal coupling of the components. The features of Dymola allow
the development of domain specific class-libraries for e g. electronic circuits, control sy-
stems, hydraulic systems, thermodynamics systems, bond graphs and others, which can all
be used in conjunction for generating a specific molts-domain application model Dymola

generates efiin yblccode for several target smulators' It can handle ordinary
differential equatin models as well as differential-algebraic equation (DAE) models If
a DAE in of higher index, certain paits of the equations are sym ,olically differentiated
according to the algorithm of Pantelides [221

11iresently Dymola supports ACSL18j, DESIRE[131. SIMNON(7J SIMULINK(161 and plain Fortrant
neither Swonon- or DMblock-feimt20)



In this paper it is shown how variable structure multibody systems can be modeled by
Dymola. For this purpose a Dymola library based on the recursive O(n) algorithm of [1] is
explained in detail, The algorithm had to be slightly modified in order to arrive at a "truly"
object-oriented formulation as encouraged by Dymola. "Truly", object.oriented mneans, that
physical objecisof the ..-ultibody system are mapped to corresponding Dymola objects,
whicharetconnected i accordancewiltrhthephysicalcoupling.of the system'(this is no
block-d'iram representation if input/output blocks). The class description of an object
contains thequations that describe the object, and the cut-definition, i.e., a definition of
the interface of that object to other objects. Due to this procedure, the equation's 6f mption
of a multibody system are determined by~ymola using only the chnection structure of
objects and the local information about objects. It turns out that this description form
has close connections to the bond graph methodology 126. 3[. In fact. this object-oriented
definition of a multibody system can be interpreted as a multibody bond graph2.

Besides a reformulation of an O(n) algorithm, a new enhancement of this algorithm is pre.
sented that allows the efficient treatment of a certainclass of variable structure systems,
i.e.. systems with varyinj dor.ees of freedom. In the last years. methods to handle mul-
tibody systems with variable structure have been considerably improved [14. 24, 11. 10).
Usually, such systems are modeled by numerical multibody programs. This is due to the
fact that, if n independent switches are present to remove or add one degree of freedom,
2' different configurations are possible. For example, if dry friction is present in the joints
of a 6 degree-of-freedom (dof) robot, 2s = 64 configurations are possible, since every joint
can either be in sliding (= 1 dof) or in sticking (= 0 dof) mode. Numer cal multibody
programs are designed to hanile a large class of multibody systems with the same pro-
gram. If such a feature is present, it is not principally difficult to change the configuration
(i.e., the multibody system) during integration. On the other hand, a symbolic multibody
program generates code for a specific multibody system only. Therefore, 21 different co-
des have in general to be generated, if there are 21 possible configurations (= multibody
systems). Even for a modestly sized multibody system, such as a 6 dof robot with dry
friction, this would be quite impractical. It will be shown that a simple modification of the
recursive O(n) algorithm circumvents this difficulty and will allow the symbolic generation
of compact and efficient code for variable structure systems.

Dymola together with its multibody library is comparable to commercially available mul.
tibody programs both in terms of efficieucy and ease-of-use. However as already noted,
Dymola can easily model components from other engineering domains is conjunction with
the multibody components by invoking them from other already available class libraries,
For example, a sophisticated library for electronic components corresponding to the SPICE
electronics program 1191 (diodes. Zener diodes, tunnel diodes, BJTs. JFets, MosFets. and

GaAs transistors) is being developed at the University of Arizona. In contrast to other
multibody programs, Dymola supports multieiscipltnary modeling within one environment
- the multibody part being just one model component among other equally import.nt
engineering disciplines.

"Sme not fernharwth the bond graph methodology can just skip related paragraphs in this paper j
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2 Detailed robot model,

Dymola is introduced by means of a detailed dynamic model of the industrial robot Manu-
tecr3 described in [J. -The structure of this ',multidisciplinary" model is shown in Figure~h 6dreofreoriobtCsssofaytmofrgdoiscnetdbyIdare

volute joints, Every joint is driven by's torque. prodsced by the electro- magnetic field of
a current-controlle bDC.motor and transformed by gear-boxes. The motors are controlled
by decentralized cascade controllers, The block 'rotor~gear" in Figure 1 contains the
mechanical part of a motor and of its gear-box,

Dymola supports a hsierarchical decomposition of models. The Dymola model can there-
fore be designed such that it directly reflects the model structure as shown by the following
definition of the robot in the Dymola model language ("1indicates similar items that
have been omitted in order to shorten the text):

cmodel Mromi
submaodel (RSeonii'l) ci, ci. 4 , c, c$e
subrucodel (Rimuiurl ml RiiOR*40CiH6. ) . m6(. J

{vtlrinput =jd 19d -rti q *d W mu.f~ deire amu nges

rI.Vd = plaqld
ci qi = p2.q2d f

edCi6iud = pt~w~d

According to the different block component types of Figure 1. model clauses are defuned
in a library that is made available to the model (object) definition through the command

MRno bot ib (the 0 operator tells Dymola to include the file R~i-obot.fib). New models
(or objects) of these class definitions are instantiated by the command-

submnodel (claus-name) ObJOCt-na4me (parameters)..

For example the statement "submodel (R~control) ci, d, c3, c4, c5, c6" instantiates
nix identical objects of the same class R3control Tnin is meaningful since, in the R3
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. ..... .

0, ~ .......... ........ .. .......

Figure 1: Model structure of Manutec r3 robot

robot, six identical cascade controllers are used. In contrast, the six motors of the robot
have the same structure but different parameters. Therefore the class Rmotoris used to
describe the motor structure, whereas a specific motor is defined by supplying appropriate

values for the motor parameters. Since the robot employs gear-boxes of two structurally
different kinds, two different classes (R3gearA, RSgearB) are provided. Finally an object
of the multbody description (i.e., the robot itself without the motors. gear.boxes and
controllers) is instantiated from class RSmnbs.
With the statement "constant pI=-

1
05,.... the gear ratios p, are defined as constants

They are used in two different places (gear.box and input of controller). With the state
ments "input qlid_.." the input signals of the overall model are defined. These are the
desired angles and angular velocities of the joints as input to the controllers.
All the objects are assembled by the connect statements. The meaning of a connect sta-

tement such as "connect cl to ml" is defined :a the corresponding class description, as
will be explained below. Note, that there is no signal direction associated with a connect
statement. It is therefore not an input/output block-diagram description! Instead, the
connect statement reflects the physical coupling of components. If an object has se-
veral different interfaces, also called cuts, the notation object:cut is used. For example, I
"connect gl to robotujl" states that gear-box 1 is attached at cut ji (= joint 1) rf
object robot. At the end of the model description, the connections between the glbbal
input signals and the model are specified. For example, "cl.qd = pl*qld" states that the
input variable qd of controller cl is the desired angle qlid multiplied by the gear-ratio p,
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To this point.the top'most model components have been assembled. We shall now look
at the component models themselves, Motors are described by objects of class R3motor
which makes use of a basic Dymola library for electrical components such as resistors,
capacitors, and operational amplifiers Let us first have a look' at one of the classes of
thislibraryin order~to getfamilar with some important concepts of Dymola. In the
aforementioned library a' cajaitorisdefined as follows:

model classcapacitor E.VA E LVS

parameter C ELVA O &.Vs

cut A (Vs/ i), B (VbI-,)

main path pAB <A - B>[E
local VE

Va- Vb =u E
C-der(u) = i nsA nan

end Figure 2: Dymola connection rules

A capacitor is an element with two cuts A and B through which it can be connected
to other elements. With each cut two variables are associated, the potential at the wire
(Va, Vib) and the current flowing into the component through the wire (i, -i). Dymola
distinguishes between two types of variables: across and through variables. In a cut
declaration, all variables to the left of the slash operator ("/") are defined to be across
variables, whereas all variables to the right of the slash operator are defined to be through
variables. Accordingly, the potentials Va, V$ are considered as across variables, whereas
the current s is a through variable. The difference between these two variable types
becomes apparent in a connection only. Assume for example, that three elements El, E2.
E3 with the above cut-definition are connected at one node as indicated in Figure 2. The
Dymola built.in rules will generate the equations indicated in Figure 2, i.e., the across
variables across a node are set equal, whereas the through variables through a node are
summed up to zero. These are exactly the physical laws that apply when a capacitor
is connected to other electrical elements. The statements "main cut ..." and "man
path ..." in the capacitor definition state the default connections that are used if no
cut-names are explicitly specified in the connect statement. For example, the statement
'connect Cat (nj,n)" is equivalent to the longer specification "connect C:A at n],
C:B at n2.

The physical laws of the capacitor are programmed in the last two statements using the
cut-variables and the der operator that characterizes a differential. An important feature
of Dymola is that no direction is associated with variables. Based on the connection
structure of the overall model and the problem description, Dymola will dt rmine on
its own for which variable each of the equations needs to be solved, and ap , symbolic
formula manipulation to transform the equations to the desired form, if necessary. Due
to this feature. Dymola supports the use of true equations rather than simple assignment
statements.
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Let us now return to the robot exn De. Using the aforementioned library of basic electrical
sho~w n in Oi,;ure 3 canbe defined in the following'way

model -class R$iolor
nubmoodel (resistor) Rdi(jR=tOO),RdflR=OO),Rd3(R=OO)R4(=4OO)
suboriodet rsit RuI(R=RtI)l, Rit (R=Rif ), ReSR=f 20), Rp(R=200), Ra(R=Ra)
submocdel (capacitor) Ci(C=Ci)'
ouibmodel (indicttor) L4(L=La)
submiodel (am)f) enif&=kmoi) felectio-mtric-force)
subitcodlhll) Jsall~k ) fboll sensor)
subinodel (OpAtnp) duf P! (operational amoplifier)
subseodel (OpiP) ora'(operational amplifier)

param oee ... d) o'I.4 knoi=S.45, R 1=410 RiO =500, Ci= ]E.7

cut elec (Vdl/id), onecht (rq, mw), control (nech, aloet f(connection to controller)
cut #car (N. mo / V) (connection to gear)
main cut c (control, Oearl (default connection beittviaut)
main path p < control - gear> i.defaoult connection behaviour)

node nOal, nA, 4 n4, n$, 6, ~4 ni, R6, RIO,: al l,0connct diatW'D' Ju at(O'n), d$ a WI

vait fdifert formt nto5 deI t connectio opone t s.Asaeeto
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the form "connect Rdi at (n2f,n57' means, that object Rdl is placed between the two
nodes ri2. Wi.I h aewy leo~.rclasse R~cantrof, R3gearA and R3gearB arenfzdI n re, t,'mi ~ ~ ~ two ssects
defned bttey ar mte-ei u to space limitations. Class R3inbs, to describe
thim~ifiniiiil (maltih6dy) pai~tofthe robot, is discussed after deriving the Dymola class

libraq for Wuibo ' ste intheInxtw cios

3 Basic clasies of multibody libraryj

The mnost. difficult. part is developing a Dymola library is the selection of basic objects
as abstract mappings of theii physical counterparts. Here, this selection is based on the
object-corientiWd data model for multibody systems of 121J. The most fundamental object is
a coordnate system, or frame, as shown in Figure 4 below, A frame i is always described
with respect to a reference frame r I[= ref(:)). If frame i is sot moving with respect to

A®A

...... f, component

Dbjoct C bond graph

Fgr4:Fundamental Dymola class Frame

frame r, the two frames are material points located on the same rigid body. If there is a
reaiemotion between thre two 1rames, frame idescribes an ideal joist, such as a revoiste

or spherical joint The inertial system is the special frame 0. where the movement of the
frame is known (= is attrest) and is therefore the only frame, which bassno referesce frame
Is the multibody library, clams Frame describes the common properties of all different frame
types. Specific frames. such as class Revolute describing a revolute joist, are derived by

inheritance from superclass Frame.
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-The'rem'ent !f f ame im uniquelydecribe by the direction cosine matrix T,, whichSt smt.s roe fmi:in :the'iiertial frafe and the a bsolute positon
~~Et~~whi;.,- -ctpii' ,fm te orgi f ih~e~ Ifm~ t the orii

,of:f' Equ ivley the ov'erinntofir ime 'lorc I Iel is described by the

"Ot ilr veloct 'd Of rae~ a ~ te absol !te I'near veloci ty ;of te origin of
thin fiame.' If the movement of the reference frame r is known, the movement of frame i
8an be calculated given the expressions for the relative motion.

At theorigin of frame a force f, and a toique r, are acting These two quantities
risult from cuttingforces and torques as'well ,'i from internally applied forces and torques
ciug btw;em frame:i andi frame r.4For naotational convenience; these two quantities are

,concatenated into'a generdlzed fice vector'f,, andlqually are theangular and linear
velocity of, a frame concatenated into a generalized velocit, vector C':

With these preambles, Figure 4 can now be discussed in more detad. In the top part,
frame i and its reference frame r are shown. Vector ii, characterizes the movement of
frame i, whereas vector fi characterizes the generaited force acting on frame :. Frame :
can be viewed as a iransfornmerelement that transforms the "movement" -', of frame r to
the "movement", -"i of frame i and the force 1i acting on frame i to force t,(,) acting with
negative sign (due to the aMtio=reactio principle) on frame r using the usual transformation
rules for e€citie' and forces.

The lower left part of Figure 4 depicts the corresponding Dymola object. This object has
three cuts (A,B,C), which are used to connect the object to other objects. Cut C will be
explained in. more detail below, Every cut is a collection of several variables. The most
important ones are shown in the figure. Note that there is i'. (input/output) direction
associated with the variables of a cut. Dymola determines this information by itself, based
on the connection structure and the problem description.

Two or more cuts can be connected at one node, As !ready noted, Dymola has two built.
in rules for such a connection. Across variables are identical, whereas through variables
sum up to zero, Due to the cutprinciple in mechanics, all kinematic quantities of a cut
(= position, velocity, acceleration) are treated as across variables, whereas the forces
are nrepsed -% through variables, See for example Figure 6: Frame F2 is the reference
frame of frames F3 and F4, Cut B of frame F2 and cut A of frames F3, F4 are therefore
con,e.ted. , S e kinematic variables of these three cuts are identical since th-y describe
the movemeo, o; the reference frame F2 . On the other hand, the forces sum up to zero,

i~e, f3 - f'2(3) - f2(4) 0,Finally, the lower right part of Figure 4 shows the bond graph representation of a frame. ..

Except for the (unusual) additional bond corresponding to cut C, a frame can be viewed j
) ~ ~~as a mo,ulte t,'arsformner TF, transporting the power f );,from frame r to frame iwithout storing energy.
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Until now, tlredescription of class Framewas- rather informal. To arrive assa rigorous
syncrlcation by equations, same further definitions are necessary: Matrix E :s the- identity

mtx.The cooridinates of a' vector kh,'whichs resolved in frame j, is gitn as a column
IeorJh.,f i=-j. index j can Ibe ,removed, ine., h; is the vector 9, resolved in fume t.

His a skew-symmetric (3 x 3) matrix)-

H H= ske,(i) = svkew,( [1, ' h 3 -* h= ecg

It is asiumed that frame i has n, degrees of freedom (0 :5 n, 5 6) with respect to frame r
and that ni gen~ralized coordinateb q#() are used to uniqueiy describs 'the relative motion
of fra me i with respect to its reference, fCame r (e g. for a frame describing a resolute
joint. iq is the rotation-angle of the joint). Therefore, the relative direction cosiee matrix
T,!('q,), describing the orientation of frame i with respect to frame r, and the relative
position vector r,11(qli), pointing from~the origin of frame r to the origin of frame i, arefunctions of the generalized coordinates qi only This functional dependency in defined in
the corresponding subclass of superclass Frame, e.g. in claus Revolute to describe a reso-
lute joint. Using these definitions, an object of class Frame is described by the following
equations. utilizing the usual relations for relative kinematics, force transformations and
d'Alembert principle (see, for example 125)), iu well as a novel matrix L, to define the
variable structure of the system:

T.- TT"'r (1a)
r,= Or, + T~, 'r'~ (I b)

= C,, ,+ ,, (1c)
i. C~,+-..+4 (1d)

,(-) CT t~ (le)
+ -,! Ti (I f),
0 = L,4, +(E -L,);k (1g)

P f.(, +A -X"7', (1h)

where

W.0~ T," T? ] vec (T,'7  
;) ~ (a

fT,~ 0 if E (2bC,(q,) = 1 0 T," I~ I ske (r,4) 012b
1qT,4.,wif = T," 01

L, diog((L,,),), (L,), =if locked then I else 0 (2d) -
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Let usAisniss these equations one after the other. Equation (ia) states. that the direction
-cosine masrex.Trof frame is calculated using the direction cosine matrix of the reference
fram.ieand~the eelat:ve direction~cosine-matrx;4hch is only a'function of q,. In the
samtwaythe ahsolute;po;tion'vetor.rrof framue f- rhich is resolved in the inertial
"frie iicalculatd unsihe the absolute position vector of frame r and the 'relitive position
ve-tor .onet1 the two fr-am-es.

The habsolute', position vector osris resolved in,the inertial frame, whereas all the other
viais i 4 e.k, velodties in"forces are resolved in the corresponding-framesi ( or r) The
reasfor th isihatii the postion vector is e.g. needed in kinematic analysis problems

or i determine aiiin'ation data. In' such' problems, the vector-has to be resoled in the
inertial frame. 5On' the others hand, velocities, icceerat ons and forces are utilized in
dynar nicanalysis problems.'For' the most important of these applications, i.e., the direct
kinetica problem, a detailed analysis of a certain class of multibody systems described in
[121 unveils that the O(n) algorithm yields more efficient code when the calculation is
performed in body-fixed coordinate systems rather than the inertial system. Furthermore,
it is more natural to resolve forces in body-fixed frames since the directions of the forces
can,6e associated, with geometric properties of the corresponding component. Using
the multibody library, it is of course easily4easible to resolve ivery vector in any desired
coordinate system since the absolute direction cosine matrix of every frame is determined

3

Equation' (c)'staties that the absolute velocity -'1 ofiframei, resolved in frame I is
caldilated suing the absolte velocity of frame r and the relative velocity of frame 1 with
respect to frame r, Equation (id) states the same fact for the absolute acceleration i,
of frame i, These two equations have been derived by differentiating equations (lalb)
twice, using the following definitions:

€"= Tro, 0 ; ,, - r (3)

fwhere 0 0] 4o¢, = t € 0 Ti

Equation (le) indicates how the force ti acting on frame s is transformed to frame r

Note that, for this transformation, the same (but transposed) matrix C, is used that is
also utilized in the kinematic equations. Equation (if) is an important equation relating - .,
forces and kinematics based on the d'Alembert principle. Neglecting the term L,X! for the
moment, this equation states that the generalized force it acting on frame t and projected
onto the free direction f, of the frame is the generalized applied force A' acting between
the two frames". If no generalized applied force V is present. O i = 0. i.e.. t, consists
of 6 - n, independent coordinates only - the constraint forces in the joint. -

3The Dymola translator has an option. that ellequatioAs are remoned which ate not needed to compute
the desired ontpnt variables Therefore, equations (la.h) do not show up in the generaed code if

anoimation data are needed end if no force elements are present
"If the frame desn-eles a revolutt joint. for example. A, is th. s;plied torque acting alone the axis of
rottion u.. whereas v. orT 0o 01
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quatonlg) is used to describe the variable structure of the frame in the following sense.
It is, ssumi, that-eor single iree.f-freedom (dof) of the frame can be locked i.e.,
thi i corei pd:;ng~gen'ra' ed' c 6rdinates.arefixeto (qze. =.coit), whereas'the first and
seco idderivatives'of these coordinates art set to zero. In such a situation, an additional
constraint force ,j[has to beapplied 'that, actsinthe same direction-as the generalized
applied foce ,. .Theto possible states (fre/locked) are defined bythe diagoral matrix

tLhe lfthj'th diigonalilementof L ' th e-t I fkedlf it sze;o,' the j-th
ho'~~i~.;lerefore,, ilati W(tK)lstlit" ihat'4, o:b if all deljreesof( freedom are

-ockid;and that otherwise the' €onstraintforces A o 0. During integration.,matnx L,
remains constant. ,Th,matrix may change its vQaue only before the integration starts or
immediately after an event has occurred.

Finally, equation (lh) states that the energy flowing into the frame is the same as the
energy flowing out of the frame since the frame does not store energy, This equation can
easily be derived from equations (lc. e.lf).

In Figure 4, the bond graph of a frame has an unusual bond, corresponding to cut C.The reason is that variables fi(), ,,., and X,, , are related through equations (1).

Since these relations hold for every single frame object, a bond graph would become very
complex if this structure wre always 3hown explicitly using basic bond graph elements.
For simplicity, it was therefore decided to generalize the trunsformer element instead.

Usually, bonds transmit only effort and flow variables. This is not the case in the multibody
bond graph. Here, the position (= integral of the flow variable) and the acceleration (=
derivative of the flow variable) are also transmitted, due to equations (lalbd). There are
two reasons for this dicision: First of all, the integral of the flow variable does not always
exist, since in a seneral thre-dimensional movement, the angular velocity is ro integrable
to a position coordinitee. Secondly, nearly all multibody systems represent hijher.index
differential algebraic equations (DAE) if the connection of bond graph elemet %doneon
velocity level only. The explicit usage of the additional position and acceleration variables
can be viewed as an application of the general "dummy derivative" technique to reducethe index of a DAE 14. 17J. In this case. the equation's (Iaxhb) were manually differentiated

and included as (lc0d). Alternatively, the Pantelides algoritnm (221 could have been used
to determine what equations to differentiate in order to reduce the index.

It is straightforward to build a Dymola class description based on equations (1). For this,
equations (1) are split into two parts. All terms depending on relative quantities (e.g
r
l or P,) are defined in an appropriate subclass (e.g. class Resolute for revolute joints),

whereas all other equations are defined in the comrmon superclass Frame.

Class Frame allows a rather general description of joints. Also, rheonomic joints are
included in the description although T11(q) and rl'(q,) do not explicitly depend on
time. This is due to the fact that. in the above equations, it is not defined what is known

'Power P =energy flew
'Instead nf the integral of the 'criticar el" svaible (angular velocity), the closely reinted direction
cosine matrix T. is used. see equation (3)

4
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-an4;whatis unknown,, For exampleanobject of'cdais Rrs'slnte is used as revolute joint
clasi sus __ e fq~ .

Iunknown. Thepssiblyto'use the same class dsrpin& ifretpiobl ms is one

Iordrto, bi'ibli ti eii gineiaimultiboidy systems, a few additional simple classes
areowned n ir5l s diiB 4j defin'i ms

a~~d s shw "i~g " e th m'-", a s properties of a ribidhbody.
An oject f~tiii has on y one cu, which' canbe connectedat either cut A or cst

Boanobject of clas's Fr4,me. The frame at which 'an object of class Bosdy is attached

01 rmr.... ubody 01 A S '......-

Boy object

-~ I bond graph f"- 0 f- T f

is sullyloate a te cntr o mssof the corresponding rigid body, but at can also

be ataced t an othr pcnt asste sbdA EoIject ohsclas is described b h

where

LMI= [*-mskew(Ircm) m,Enr~e

= 'Im- m~skew('rcM)skew('rcm) (5c)
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Equa tion 4 incorporates the NewtohEuler equations, i.e., it states that the derivatives of
the generalized momenta of a body are equal to the resultant generalized forces ,(c.r) ac-
ting at the reference point used for ther -'oenturn balance. In Figure 5. the corresponding
bond graphi.e the bond graph inertia element i', is shown.

Finally, class Force (cf. Figure 5) describes a force element. Similarily to class Frame,
lass Force is the superclass of all~force elements containing their common properties A

specific force element, such as a springris a subclass of class Force. An object of this class
always acts between two dil~rentframes and has therefore two cuts with which the object
s connected to'the two frames. The absolute'p siton and the absolute velocity variables

of these two frames are usually utilized,'to comp iti'the relative position and the r,!fative
velocity variasJ , which in turn a'resedto formulate theforce law i.e.. to calculate the
applied force and torque acting on the tiwo frames.

In the multibody library of Dymola, some additional classes are defined, e g. class Sensorto
measure kinematic quantities between two frames. Since these classes are not important
in the context of this paper, they are not described here. An example of a multibody
system is given in Figure 6. In the top part, an abstract picture of the multibody system
is presented, The center part shows the corresponding Dymola objects together with their
connection structure. The bottom part displays the bond graph of the multibody system,

The classes introduced so far are sufficient to describe rigid multibody systems with open
and closed kinematic loops as well as arbitrary force elements. Depending on what are
the known and unknow, variables, Dymola can generate different types of simulation
models from a general topological description of the multibody system. For example,
if the movement ofa multibody system is given and the driving forces A, in t:e joints
are required, Dymola generates the inverse model. On the other hand, if the generalized
accelerations €l have to be calculated, Dymola generates the efuations ofnmotion or direct
mdd./.Foc such a task. Dymola instantiates the equations for every involved object from
the clasu library,, adds the equations for the object connections, ind sorts all equations
in such ,a way that all unknown variablesar calculated *from the known variables. For
the Innerse nodel, it turns out that this strategy will generate equations to calculate the
unknown joint forces in exactly the same way as the O(n) algorithm7 of Luh/Walker/Paul
115J, The generated code Is therefore very efficient. .
In the case of the equations of motion, several practical problems appear when calculating
the generalized accelerations of the system. First of all, the user has to select minimal
coordinates, which may not be a trivial task if the system contains closed kinematic loops.
Secondly, Dymola wil; detect a very large (sparse) system of equations that could be solved

as a general system of index 1 differential.algebra:c equations (DAE). Howeier, since this
uystem of equations is huge even for modestly.sized multibody systems, standard general.
purpose CAE solvers such as DASSL [231 are not applicable, If only joint coordinates q, are I
used as minimal coordinates and if the multibody system has no closed kinematic loops,
the large system of equations is linear. Dymola can solve linear equations symbolically in

7' number of deerees of freedom
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Figure 6: Example of multibody system modeling usn Dymola

order to rjduce the DAE to state space form. Several examples have indicated that the
standard built-in method of Dymola to solve this matrix equation will usually produce very
inefficient code. With special tearing mechanisms, it is possible to make the solstion of
the matrix equation more efficient. While Dymola supports tearing, an application of this
techsique requires some user interaction
In the next section. an alternative approach is explained. For the direct problem, a second !
class library called mhsdr.dr is provio',:d, which has essentially the same interfaces as the I
class library mbainodhb explained above. A multibody system is defined in exuctlti thet
same way as before. However, the equations of the clans-library mbsinv.lib have been
transformed in such a way that Dymola will produce very effhcient code for tree-structured1multibody systems with variable structure.

4 Adaptation of class library to direct problem

Equations (1) form the starting point to reformulate the class library. The reformulation

is based on the assumption that It is always possi ble to express the force and torque f,,..

Ff4
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vhc stransferred between the Cuts of, multibody objects, as a linear function of the
abulut liearandanglaracceleration ii transferred viathsaec.ie.

C. + b. 1,= (6)

This assumption hoilds true for clauses Body, and Force since the corresponding equation
(4),oF a body object' is already in' ' is form,'and since the equation for a force object is4
a special case with LI- 0 becanseta forciaii w does not 'depend on accelerations. What
remains to be shown is that this assumption also holds for class Frame. For the proof of
this statement, assume first that equation (6) holds true for cat 8 of an object of class
FraM-C. Accordinig to Wehage (271, equations (ld~lf~g) together with equation (6) canA
be combined to form the following linear, symmetric matrix equation:

fI -E 0 0 _, -b ,
-E 0 0, 0 , - CA-,
0 O-0,L (7)

Equation (7) states that the unknown variables of frame t can be expressed as linear
functions of the unknown acceleration ii. of frame r. Solving (7) explicitly for the unknown
quantities of frame:i results in:

A!' = -,I,(8a)

q,= M,-(h.+A!) (8b)
ii. = CX+OA+C (8c)

= Ii + b. (8d)

where

I. m A?-T(ICA+4,)b,)(9a)
M,= O*TLG. (9b)

L,' = (L,M'+ E -L,-'L,M' L. V dim(L)I x 1 (9c)

Inserting these equations into (1e) yields the transformed force ,(,) as a functiol of the

where

L= eCT.(Ia
b,(,) = CT (b, + N,f, + LP,M.-1(E - L*) ( -P~~b.)) (Ilb)

N, = 1, - I,-#,M,-'(E - L,:)4TI, (11c)
=, IP~ (lid)

L.- (L,M,-' + E - L.)-' L,M,-' - L, if dirn(L.) I lx I (I le)
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It has thus been proventhat,(6) implies (10). The fact that forces at a'connection node
sum to zerothat.accelerations are'identical'and that 1, and, b are declared as through
variables implies that (6) holds. Q.E.D.

The class library mbsdir.lib is built by using the already explained class library mbsrnV.lzb
and by eeplacin- equations (ld4lg) by equations;(8-11). Furthermore, not the torque and
forcef,.s prpagaied ih'rough cuts, but tIe linear factors 1, bi of the torque and force inaccordnear, 

.t o610)

The main advantage of this reformulation lies in the fact that Dymola can sort the equa-
tionS'ofr a tree structured multibody system explicitly for the generalized accelerations
el. without encountering algebraic'loops (with the exception of small linear systems of
equations within frtme objects, which are solved by inverting matrix M1i of (lid)). This
property can be explained as follows: The linear factors I,,b, are known at Body.- and
Force-objects. Using equations (1Ilib), these factors are propagated through ah Frame.
objects finally arriving at the inertial system. Since the acceleration of the inertial system
is known, equations (8) can be used to calculate all unknown variables of the objects that
are directly attached to the inertial frame. Afterwards the accelerations of these objects

ae known, and therefore the unknown variables of .ll objects attached to them can be

calculated, and so on. Of course, this feature is only valid for tree-structured multibody
systems.

The number of operations in the generated code is proportional to the number of degrees
of freedom (= O(n)) of the multibody system and is therefore very efficient, especially
if n is high. In the same sense as the inverse problem solution with library mbsinu.ib
is equivalent to the Luh/Walker/Paul algorithm 1151, the direct problem solution with
library mbadir.iib is equivalent to the recursive 0(n) algorithm of Brandl/Johanni/Otter
[11. Note that these two algorithms are not explicitly programmed. Instead, only local
prorerties of objects are stored in the corresponding class libraries. Due to the built-in
consnct'tion rules of Dymola together with its sorting algorithm, Dymola "reinvents" these
algorithms on its own.

Variable structure systems

The above class library extends the recursive algorithms such as [1 in one important
aspect. it allows the handling of variable structure systems. As already noted, matrix
L, signals whether a degree of freedom of a joint is locked or not. As can be seen, L,
appears in some places in the recursive relations (11). The occurrences of matrix L, can
easily be interpreted: Assume that all degrees-of.freedom of a joint are free, i.e. L, .=
and therefore L = 0. In this case. (11) are the usual recursive relations Or, the other
hand, if all degrees-of.freedom are locked. Li = E and therefore L, = E, and iquations
(11) reduce to the recursive relations of a fixed joint with zero degrees of freedom The
generated equations are nearly as efficient as if matrix L, were not present. This can
easily be seen for a joint with one degree of freedom. In this case, matrices M, and L,
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are scalars, and~only, two multiplications, one subtraction and one addition are added in
ordler 1'6alcilate M,'(E - L,),-Lh,,h, +A!, i.e.. the efficiency reduction due to the
variable structure is negligible.

The variable, structure of a multabody system may be caused by a brake, by a stop, or by
sticking friction. In the latter case, an additional problem appears since the sliding friction
force is usually a function of the constraint forces in the joint. If this function is linear in
the constraint forces, it is possible to generalize the above equations without destroying
the recursive 0(n) nature.
The force and torque t, acting on frame : can explicitly be expressed as a function of

the known applied forces A, and the unknown constraint forces Af in a form proposed by
Roberson and Schwertassek (251:

+ L,,\)+ ,,(12)

Matrices r, r, (q,),T' -- ,'(q) are defined such that the following relations hold

-P , E 0Tr (13)
If the joint is in sliding mode, the friction forces A; are linear functions of 'the constraint

forces Af, i.e.,
Ai7 = (E - Li)j,,A.' (14)

Inserting equation (14) into equation (12) yields:

, (L,\) +(15)

where IP = + r. (E - L,)/ ,

In a second step, a matrix -, has to be determined, which lies in the null.space of @,
i.e.,

0 (16)
Finally, equation (If has to be replaced by (15,16). As before, the recursive relations are

derived from a linea' system of equations, which is equivalent to (7):E L -E 0 0 ii. 1[ -b,
-E 0 0i 0 f. = - , - (17)
o o -L, L,-E 0- o 1

Equation (17) has nearly the same structure as (7) with the major difference that -PT
is replaced by matrix *, . As a consequence. the system matrix of (17) is no longer -
symmetric Hence, the linear factors 1, of the forces f, are no longer symmetric either
Except for this property, the derivation proceeds as before, and the resulting equations
are identic~l v.,th the previous equations with the deviation that OT is replaced by
everywhere
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5 .Dymola,.,model ,of~mechanicaI part -of robot

The Dymola library for multibody systems as explained is the last two sectiotyr is not
prvdd here due to space limitations- However, todcemonstrate its usage, the multibody

in deI of the 6 dof robot of section, 2 is presented:

'rocdel ctias Rlrnba

aubosodel (Inertial) i(ngl.1.)
asbtoodel (Revolvie) rl(Os=l), r1(nI=!), r~11rr01?

submocdal (Body) b1(13S=1.16)
aubtasodel (Bodly) 62(m=56.5, rim..171, r3ar0.205,

111=2.S8, 121=1.73, 13S=0.64,M11=.0.46)

cut )I1 (qj, edl, Iddl 0 t) (angle. sglar velocity,

cut O (q qdb qdd/ angular acceleration / torque in joint)

cut J6 (yO,d, qd /M 0)f

coisoect i to ri to a-b to a-S to a-4 to r$I to P6,
61 at a-i, if at a-i, U$ at r$S. 14 at P-4, b5 at r-I, loud at r-6,
il at rJ:Auna, )f at rfiAss, j$ at a-S:Aso,
14 at r4.,Ari, j5 at r5I:Auu, )6 at a-8:Auu

enfbody 6 without load is nelected with repect to rotor of body 8) *
To define the robot, it is positioned in a special configuration (here: "vertical position"
of all bodies). All vectors and tensors are given in thin configuration, resolved in the
inertial frame. A revolute joivt r, is for example defined by the position vector r, from
the reference frame r to frame i of the joint and the axis of rotation n. All coordinates
of these vectors are zero by default. Therefore the declaration 'sutabodel (Revolute)
a-(nl=I,a-B=,5 defines a revolute joint, which is located O.5m in the direction of the
3.sxis of frame r2 (due to "connect r2 to r8*) and which rotates about axis 1 of the
new frame r3. When the axes of frames r2 and r3 coincide, the rotation angle is zero.
The other meltibody objects are defined in a similiar fashion. The interface of the roboti
to the outside world is given by cusa jI, ., j6, which transfer the angle. the angular Cvelocity, the angular acceleration and the torque in the revolute joints.

Genersting the equations of motion and the inverse model for an object of the above
class (i.e.. the multibody part of the robot only), Dymola produces code for each of these
problems within about 10 seconds' containing the following operational counts,

'on an Apollo wekttatin with a Motoroila 88040 yreciiaaor
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direct problem jinverse problem
oIoperations 727 269

-operations 493 190

The numbers of operations are approximately the same as for other symbolic multibody
programs.

6 Conclusions

In this paper, a new library for the object-oriented modeling language Dymola was presen
ted that supports the modeling of general multibody systems consisting of connection of
rigid bodies, ideal joints. and force elements. The presented library generates efficient code

for tree-structared multibody systems. Multibody systems with cloned kinematic loops,
5such as ifivel-point wheel suspension system with four closely coupled loops and one dof,

have also been studied already, but the treatment of such systems is not yet sufficientlyt
comfortable due to required user interaction. This situation will improve soon.

Dymola mast sot be viewed as just *yet another" multibody program. The unique fea-
ture of Dymola in its support for modeling components from several different engineering
disciplines withiii one environment. For example, Dymola has been successfully applied to
the modeling of %he thermodynamic behavior of a house using bond graphs (281, cnemical
reaction systems [2), and electronic circuits. Presently, Dymola is enhanced by sophistica-
ted new language elements for the definition and handling of discrete-event systems based
on time and state events (5]. This will also add new functionality to the multibody libr-
ary, since sampled data systems, interconnected frction elements and other discontinuous
elements can be handled easily by use of these language extensions. a
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;1,
MiNiMAL DYNAM IC CHARACTERIZATION
6OFTREgE-LikEMULTIlODY SYSTEMS

P. FISETTEB.RAUCENT AND J.C. A I

of m ss 4buuon for Instance when barycentic: poranteters are used. Thus. asmn htteprmtr
mitd in tInestatics; we perfectly ksown. theme quantidies can be estimated through neregsio
teldl. neomussy data ame obtained by measuring the Joint forces and/or torques and the resulting
nu gvnitemns of postelors. velocities and aceensn.An alternative method uses measurements

othrecinforces and torques aple otebedplae
l lnaiyof the dysnmic adrecn modelIs with respect to the barycentric quantites does not

hwvripythat the latter consititute the minimum set of Paramneters characteriing the mass
distributiotn of the sysitem. In otherwoeds, some burycentri paramnes may disappear fsetn the models or
may beredundant in the at= that they appeoly va near comsittons.In thetcase they wenot
identifiable, while in the second case the linear regreaneon technique leads to estimated values wich are

corectforthecominatiotsbet can be erroneious for tie individual parnmners.
Thevarousopion taento deriv the dynaic and reaction models by se of the ROBOTRAN4

Lluitted by mum of a practical example related to a robot asibranuon problem.

Iutlroduction

Vanious problem in robotics require the comtputetion of the dynamical model of the robot
which relates the generalized control forces that are transmitted through the joints and the

co rreponding generalized coordinates oj. their velocities and accelerations. for instance
high speed and high precision control cast only be achieved using advanced control

aloihs suc as th "cmue torque" control, which require an acuaeadi-et
knowledge of the robot dynamics.

The structure itself of the dynamical equations is well kniown. However these equations

constituting the robot sind therefore. a g~od knowledge of these parameters to absolutely
necessary. In psriscular. meatsrng the parameters related to the mass distribution is not
trivial and leads naturally to an identification problem 1 1.2.3.41.

In the first section of this paper, it ts shown -often noted 'a posteriori as a fact (4) - that
the dynamical model is linear wtth respect to the parameters of mass distribution tf



barycentnc quarvities are used (5). However, it should be noted that this linearity with respect
to these unkno vn parameters is valid only if the geomeical lengths ot the system are
supposed to be known, for instance by a kinematic calibration (6).

In order to tmphasize these properties. the equatscns of motion of a tree-like multibody
system have been written in a paricular vectorial form derived from the Potential Power
Principle (a modified version ofd'Alemnbert Principle) As Apresented in section two. this form
is used by vc programme ROBOTRAN (7j to provide automatically the dynamical model.
ROBOTRiN deals with mathematical expressions by means of pointers (PASCAL
programmiig Ilnguage) and prints the resulting equations is a literal form (character
strings). Cte purpose of this programme is to emphasize the linearity with respect to 0
baycentr.; parameters, so the derived equations ae not necessarily optenal as regards the
number o' anthtmetic operations for nuzmerical simulations.

In the third section of this paper, an original procedure fMr the estimation of the
barycentric parameters of a robot is presented (8. 9. 10. This procedure is based on the
property that the relations between the robot motion and its reactrois on the bedplate are
completely independent of th internal joints forces. The procedure thus requires only the
processing of measurements provided by an external experimental sel-up (8) The robot is
placed on a sensing platform which is provided with sensors able to measure the three
components of tie forces and the three components of the torques between the bedplate and
the fim lnk of the robot.Section four deals with the parameter combinations which ar required to satisfy the

idendflability conditions. A systematic way to obtain these combinations is presented. InPanlCulAf, it Is shown that thecreacton model used for Identification has the same structure as
the dynamical model and that all the barycenriec parameters occuring in the dynamical
model also appear explicitly in the Identification model. Finally. a practical exemple of
parameter combination is given in the fifth section.

1. Dynamic and Identification Models

L'. GEOMETRICAL STRUCTURE AND KINEMATICS

In t1s sectron. we will review the various opoons taken to describe the multibody systems
under consideration.

The system is considered as a set of n rigid bodies interconnected by joints. In the present
paper. it is assumed that the atructure is a topological tree. The joints are numbered in a

ascending order. starting from the base.plate (body 0) and each body has the same index as
the preceding joint. A function, INBODY, is then defined to provide for every joint the index
number of the preceding body. By means of a recurrint use of this function, the whole set of
indices of bodies and joints of the kinematical chain which connect an arbitrary body to the
base can be obtained. The notation i S j means that the joint (body) i belongs to this chain
for body j. For later convenience. a boolean matrix T is used whose elements ar defined as: -:, -

T-II ifi~j

The charactenstic geomeincal dimensions of a body i (see fig 1) am given by the vectors
I1) and Ii

. 
Two indices are needed because of the tree structure However, although such
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vectors should be defined only for, consecutive bodies. the notation is extended to all the
indices kt satisfying i < ic. defnig fik as follows

fik 1 1) for V k such tat I< j : (2)

Thus defined, I i provides Uhe contribution of body I to the kinematical chain leading

fron the base: so body kc. Since tfe bodies are supposed so be rigid. all the vectors Lil have

constant components if they are expressed ina frame ^ii) attached to body 1.

Fig I Geomesrical Structure.

The joins are restricted so one degree of freedom : revolute or pnismatic. There is no loss

joints. In order so develop the kinimistics, we slaun conider that: each joins allows:
rer~tive rotation esprssed by the rotation matrix AJ that relates fhe ith body frame ( PJ

so the previous one ( if), This matrix Is constant foe prismatic joints and depends on the

angular coordinate q0 In the case of revolute joeqaisnzrtfs.eolt
a relative translaion represensted by she vector 1J. This vectoriseultzrofrevue

joints and depends on the trnslational coordinate qi in the case of prismatic jobits.

The previous definitions are quite
general and still allow us to choose
the orientations of the body frames(AiN) a weUas he lcatons i o 4, r q
their origins (fig. 1) in order tor'o
minimize the number of geometric \lie4
parameters such as for instance by ~A
ustng the Denavit and Hartenibeeg v *
conventions. An equivalent minimal *
kinematic description (suggested in d bY)
(Il1) is illustrated In fig. 2 In the Bd
case of a serial link stnuctiure. Bd

lig. 2: Kinematic Parameters (Il1.
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1.2. MASS DISTRIBLITIO.( PAAETERS AND DYNAMICS

The dynamtics of the system depend en the mass distribuslon of each body. The related
parameters could be considered individually for each body, bet some of these parameters
would then combine to provide the actual parameters in the dyssamtc equattons. These
combinaitions ciuld be performned iastually (4) but this effort can be avoided if appropriate
combinations are introduced, from the outaet by conaiderng the position of the bodies in the
topological strucnte (12).

Denouang by i the mass of the ith body, by iii the position vector of is centre of mass GI

with respect so Oi (ftg 3) and by -1it inertia tensor with respect to 0'. the following
(basycentric' parameters are introduced:

k

tMbi YTk n Ii (4)

and KI - 11 1 Tk mk lik ik(5

%~here i denotes the skew-sysnmeste tensor associated with the cross product by a vector ThsIaaetr ~
Ths aaatisare independent linear combinations of the basic msa paramnettirs ink.

mkl kk and 1k. Moreover, according to the previous definitions, N' Is constant ind the

momenta of order I (rSi) and order 2 (LO) have constant components when expressed in theJ

frame (NI). These barycentrie quantities may therefore be chosen as constant parameters
which fully describe the mass distribution of the multibody system. Since there are 10 such
scalar quaniies for each body in the system, the sovi~ set of barycentec parameters is I~n.

Fig.3 : ugmeted ody

a GG
Fro aphstalpont f ie, hemas ' rprsetsth mssof n ugenedboy9

which conists of ody s an point msses i17(with s/ INOY) loaezyte etrii

Body i
L

Fig.3 : ugmeted ody
Frmapyia on fve. h asif ersnste aso nagetdbd

whic cosiss ofbod i nd ointmises J (ith NOY) oae ytevco -)
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The vector nabi is the momeint vector locating the mass centre of tus augmented body and

the tensor KI is its inertia tensor with respect to its attachment point O
i .

As shown in (51 the Principle of Potential Power for rigid body vysteins leads to the
following vector dynamic equations:

Ej--- (jik+ (Zk + §erk) 1k). 1
k:kcj

+ I TJk ( ykilk + (.k + @k~k) lab
k )  

(
6
)

i~X Tjk(Ek Fk + sbk x 'k . ) +Lkltdt + ok x Kko)k

+ I k I ,njbk x (it + (Q + 01@) ilk)
k 1:1<k

+ , TAk Y 1W x (N"-" + (it + Ile') ,qbl) (7)
k l'k<l

and two important properties which am often noted "a posterlod" as a fact (4), ansc:e
1) the torques 0 and the forces EJ are linear functions of the barycentric parameters mt.

*kk with k such thar J 9 k. 7hey become bIlinear if the geometric lengths 1jk (j<k) are

also considered as parameters.
i) the definition of Tik given in (I) allows us to observe that LI and E

i
. with I - INBODY(J).

Contains all the terms included In Li and Fl, and therefore the same barycentric parameters

(in addition to those related to the augmented body ).

In order to obtain the scalar equations of the dynamic model. we need to project the

vectors LJ (or E) onto the axis of its corresponding involute (or pnsmatic) joint. Then all the

products (scalar. vector, tensor) must be performed to ohuin the final form of the dynamic

model n which the generalized coordinates qi, velocities 41 and accelerations 4 appear I
explicitly. The latter can be written unuer the following matrix form:

M(q,O)j+ F(q,4, ) = Q (8)

where : M is the (nn) positive definite symmetric inertia matrix of the system. F is the n-
vector specifying gravitation, Coriolis and centrifugal effects, Q is the n-vector of the ,
generalized forces associated with q, and 0 is the IOn-vector containing the barycenict
parameters

Although the above operations preserve the linearity of the model with respect to the
components of the barycentrc parameters, the dynamic model involves a few independent
combinations of those basycentmc parameters. These combinations depend on the particular
nature (either pnsmauc or revolute) of the joints and recursive methods for obtaining them
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in a systematical way will be described in section 4. They lead to a set of Nd combinedI poparneters denoted 8d

whre5 i jistgmatx6 d = Sd 8. (9)
wher SdIs ful mn manx. quaion(23) can therefort; be rewritten in the linear form

Oil(q. 4.4) &d = Q , (10)
wh.-re Oid is regressor vector depending on joint pesitiosee. velocities and accelerations

2. Description of the Robotran software

The main purpose of ROBOTReAN (7) is to provide a literal express' ao (charatet srngs) of
the dynamic model of any multiody system By using the option dedicated to ldentiitcattn,
Use barycentric paiameters appear explicitly in these expressions t so that the uiter can eastly
regroup their coefficients in order to obiain the regression vectors Odl.

5 2.1. 7ME PleOCRAMM SYNTAX

Each mathematical expression of equation (10) contains one or several tetnms linked by I
minus or plas signs, each term bing the product of several factors. A factor can be an

a trigonomerical function whose arg%:ment is a factor, or a mathematical expression between

brackets. Thus defined, an expression tan be considered as a tree whose nodes represent the
gnnerure ofrint ore gxpmetsical cosatwihhv:ob

~integer whose value has to be given as a constant.
barycentie parameter,.eeaie oriaeo emtia osatwihhv ob
Identified by an appropriate string of characters.
cosine or sine function whose argument (also an expression) muse be given.
plus, minus, times operators whose two operands must be given as exprestions.

For instance. the expressiou 1g s in(ql) + a - 2 can be represented by ig 4:

CSrTg Wr CST a Col if2

Fig. 4 :Tree representation of a symibolical expression.

These exprots are than to, recessaitdy optimal as regards the nimbee of anthmeire operations for on-
tine applications.
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22, THE MA IPULATIONS AND SIMPLIFICATIONS

In order to avoid expressions hke , x = a + b - a, some order is introduced to classify the
expresiioisThis order is given first by cheir' natures and tliefi by a lexicographical order on
the strings of characters (for instance, 0 < cos(ql) < sin(ql) < (q2+q3)). At each operation.
the resulting expressions are rewnen according to the prescribed order and then consecutive
equalterims.wih opposite signs are simplifed.it can thus be ensured that the expression
apoeiring'in thef bbtained equations cannio! be further reduced without using specific
formnilaieof tilgonomery.1This kind of reductiois can be performed manually or by several
dedicated pisgranlomes (MACSYMA; SNP. REDUCE. ...).

Finally. in order tb reduce the size of the output. intermediate auxiliary variables can be
used to replace each product of trgonomereical functions. These variables are produced by

taking the relation order into iccount so it is as easy as before to find the possible
combinations of barycenric parameters and the regression vectors.

2.3. APPLICATION TO THE PUMA ROBOT

Tee PUMA 562 (UNIMATIONS
) Is a serial six deg=e of freedom manipulator with involute

joints (fig. 5). Assuming here that the influence of the wrist is negligible. only the first three
joints are considered.

'O s

Fig. 5: The PUMA 562 (UNIMATION®).

Three body-fixed frames have been introduced for the dynamic modelling. In the
reference configuration, when the wrist is located straight above the shoulder, all these frames
are aligned with the memal frame (X0

1 attached to the bedplate. The physical characteristics(geometryand mass distrbution) of each body are given in table 1. , ::, :
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massCental nerta Tesor Center of mass position Jon

lx 0 0 0 0
linklI ml 0 V 0 l1 0

0 h i 0
0 0 0It

ink2 m2 0 0) ~ 0

0 1 0 0_________ 0
link 3 ' 0 1~ _________0___

Table 1: PUMA Description

According to lbs symbols defined in ths table, tse barycentric paraireters and the dynlamic
model are obtained automatically by the software ROBOTRAN:,

minI ml~m2+m3 Klxx Jlsxxim2-112z-l12z.ml,(-llly-ill y-lt lz-lllz)
mm2 *M2+m3 Klyy -ilyy+mm2.l12z.112z+lllz'lllz-mi
mm3 W n Klyz. .llly-lilz-inl

lzlz = lrzllly-lllysml
Rarvegnmeginsmlai K2xx J2x+mm3123z123z-n2(.122y122y.12z122z)
inbly - IlIly-in I K2yy - J2yy+min3.123z.123z+122z.t22z.m2
mblz - inm2.112z+l z-m I K2yz - .122y.122azin2

mb2y - 122y-inZ K~Za - J2zz+122y.122y-in2
mb2z - rmm3.123z+[22z.m2 KC~xx - J3u-sm3.(133y133y133z.133z)
mb3y - 133y-m3 K3yy - J3yy...33z-L33z-ml
mnb3z - 133z-in3 K3yz - .133y.133z-m3

Mix . J3zz+133y.133y-in3

Q3 -K3yn-qppi.CZ3 Q2 -Q3
+K3yyrqpp2 *K2yznc"I-~lC2
*mnb34-sppZ.123z.C3 *mb3y-qpjpl-lr. -C2
+Kiyy-qpp3 +K2yy~qpp2
.K3xx-qpl-qpl.C23.S23 +mb3z.qpp2.123z.C3
.K~zz-cipl-qpl.C23.S23 +mb3z.qpp3.123z.C3
.mb3z-qpl-sspl.123z.C23.S2 *X2xqpl-cipl-C2-S2
.mb3z-qlD2.qp2.123z-S3 +K~uzzpqpl-tlC2*S2
mb3z-g.S23 .mb3z-qpl-qpl.123z.C2.S23

*mb3zqp2.qp2.123z.S3
*mb3z.2qp-qp3123zS3
.mb3z-2sip2.sp3Wr.zS3
*isb2z-g.S2

2 Thepauticular values givenin tble Illeadto a zero value fornbut. Kixy and Kit(witha- 1. 2and 3)
3where for instanc. qpl sund& for 4(l). qppl for 4j(l), S2 for SIN(q(2)). C2 for COS(q(2)). S223 for I A(2+2+q3)

I j



QI * lzr~ypi K2yz.qp2.qp2.S2
.KaxqptS2 S2 Kt3z42'o2.2

.K2 s-qjpi.CC2 .mb3y-eqp2.qp2.i23z-S2

.K3oazxqppI.S23.S23 .K2xqpl-cqp2-S22
.K3zz-qgpt'C23'C23 *lc2zz-eqsl-qp2.S22
raK2.pp.23zS Z .KUrzqpl-p.S2233
nym(S_2.0plt3rS.2 3xz-pl-up2.S2233

*KPyz-qpp2-C23 +tnb3z.2.spl-qp2.l23z.5223
*mb3y~qpp2.123z.C2 vK3yitlqp3;44423'
+K3yz-qpp3.C23 Kx-pq3S23

*Km1zzqplIqp3S2Z33
+mb3z.2.qpI-qp3.123z.C23.S2
*K3y.2.qp2-qp3.S23

3. Identification of Dynamic Parameters

In the classical Identification approach the values of 6dj are estimated from input data (torques
applied to the links) and output data (positions, velocities and accelerations of the joints)
provided by "Internal moarms devices located Inside the arms (see e.g.(I.2.3)). The
model relating these input and output variables Is described by the inear equations (10).
Therefore, in principle, parameters can be estimated througth linear regression techniques.
However, there Is a major drawback In the practical Implementation of sudsh techniques :.
direct measurements of torques applied to the links are not available, so that torques have to
be evaluated as sums of torques pr-ovided by the actuators and of friction torques which may
be relatively large. Two problems then occur:
a) For most comsmercial robots, torques provided by the actuators can be obtained from
internal measiarements, but with poor accuracy. Consider for Instance a permanent magnet
d-c motor controlled through Its ann. ire voltage or current. The torque can be estimated
frost Input current measurements using the torque constant available from the
manufacrutr's technical data, albeit %4th uncertainties up to 10% ; furthermore the value of
this constant can change over the robot lifetime.
o) The implementation of a parameter estimation procedure requires an accurate model of
fncuon effects and estimation of the characeristc parameters of the friction. It means thata
barycenti parameters and friction parameters must be estimated simultaneously. based on
an adequate friction model. Thtis coupling between barycentric and friction parameters may
degrade the accuracy of the barycentnc parameter estimates.

An alternative approach has been proposed in order to avoid the above drawbacks
(8.9.10). It is based on a reformulation of the system dynamics relating the motion of the
robot to the reaction forces and torques on its bedplate. The robot is placed on a tensing
platform equipped with sensors providing measurements of the three forces and the three
torques components between the bedplate and the robot. The main advantage of such an
experimental set-up is that it supplies the estimation algonithm with data which ame far more
accurate than the data which could be obtained from classical tensors located inside the robot
arms Furthermore. the reaction model is iridependear Irons internal effects (i.e. ftct-)n)
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,bYtical expressions of the reaction model can oe obtained for thle reaction torque and
fore- ezriponens; on'itie dlite,.6Y projecting tse vectors L I and F! (given by Eqs. (6)
and (7) ) onto the ax'es 6 sinertal iefereince frame attached to the bedplate. As a result of
(6)ondso (will ap he bi~iair tadthrfr nth ecin sdcl cnan lconcusin (.2.iY ith as'ceiric parameters contained in the vectorial joint equauons

die components of these ev'o vecors. Moreover. the few linear combinations'84of barycentnic
parmetrswluliwdap6eiwin poetnL n lo h xs6 h epefae

contain, the set of linrcminA6atfon.8d which occur while deducing the dynamical model
(S) from its vectsrial'ffo~ffn'(6-7)..,lnother words. the combined barycentrie parameters set 8d
defined in (9) in a suosetof the Hr parameters 6r whicha appear independently In the reaction

m d l 8  d S r w ith Sr S 0  ( 1 )
The reaction model has thus the funa

Or (q, 4.4) 8r =Qr. (12)
where or is a regressor vector depending on joint positions, velocities and accelerations and
where the Qe vector contains the six components of forceltorque reactions between the
bedplate and the robot.

Assuming that the geometrie parameters are perfectly known from a static calibration (61.
the barycentrie parameters can be estimated through linear regression techniques based on
the dynamic or reaction model. Indeed by talking measurements of Q(t), q(t). 4(t) and qfit)
for different values tIt,.tM of time, the following linear regression model is obtained either
froma (10) or (12)

where : Z - (QT~tl).QTtlM))T and

4a =(qs5 ). 400s)00i......O(q(tm). 4(ts.Oifs))T.

The problem of the ldentiflability of 8 Is stated as follows : does tre exist only one set of
values of 8 satisfying the linear regression model (13) for any motion ? We have the
following Lnvial result : a of

"4 is identifiable iff there exeists atrajectory ofshe robot such that (P) has fidI rank".
Indeed in this case:

6 .(OT4sa )T Z (14)

In order to satisfy this condition, we have to avoid redundant parasoetnzassons and to
selct sufficiently rich trajectornes.

(a) to avoid redundant parametrizanoris of the model (15.16,17). A parametrization 8sis said
to be redundant for the model. if there exists another parameteranoss P of dimension N*
with N* < N. a fill rank matrix S and a regressor (0 such that along any trajectory

6*=S*S and Z=0D 8 =0&*S (15)

In such a case itsis clear that (D cannot be full rank. For most mechamical structures, the full
* set of batycentnic parameters is redundant for the dynamic and reaction models
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7,.



7 711

(b) to select rrajectonexr which are sufficiently rich In (13] Gauthier descr bes a procedurefor the 'automatic generauon oftest trajectories, which guarantee the identiflabillty rank
conditions of,(D assuminga non-redundanteparametrizatloti-We hive however observed in
practical experimentsrtlat an emirical selecton of such trajectories is fairly easy whenconditlon.(a) is satisfied (14).

4. Minimal Dynamic Parametrization

4.1. THE RECURSIVE MODEL

In this section a recursive method for obtaining the minimal set of parameters 8 in asystematic way will be developed. Since any joint mobility is restricted to one degree offreedom (i.e. revolute or prismatic), the two models depicted in fig. 6 and fig. 7 will be
considered. These systems are composed of a body j and a carrying body I (with
itINBODYQ)). Depending on the kinematic chain which links body i to the base, this
casrying body may have up to six degrees of freedom with respect to inertial space.According to section , frames ( i} and ( J} e atched to the bodies and the axs

vector of the joint j is denoted by eJ.

4.2. PRISMATIC JOINT

The angular velocity of the carrying body I is represented by Li and the absolute position of

Oi Is given by zhe vector %t: i :k 11u)(16)

4' (k!l)a, )ii
k1

'%J - .t

Fig. 6 Pnsmatic otnt recursive model.
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Sice no a priori assumption ismade concerning the mobility o. the carrying body i. the
v~c ori~ofjs.(6) and; (7) retim~sed for the body

in +(+?'I) m (17)

L'+ z J x Fi + rnbi x ((V * g ) + KJi Q + i Ki 0)1

+ Mbi x(g, + (Lop+ ai)IIJ) (18)

where:, F-iff) J -i ) + @ + Pl'4i)b (19)

and the dynamic equation of joint jisi given by :

Iris Ej* . i (20)
As a preliminary conclusions of property (1.2.11). the equations (17) and (IS) contain the

contribution of al the barycentric parameters related to the two considered bodies. For a
general system in which the jib body as not a terminal one, these equtation, would involve
additional terms corresponding to the barycentrre quantities associated Mith the bodies
located downstream froin body j. Equations (17), (18) and (20) c,:: .uit,J4re be used to
detect, at each step of a recursive reasoning, the combinations which nay occur in the
models.

The various bazycentric parameters of body j have now to be investigated in order to
ettablsh the recursive relations leading to 85. the minimal parametrization related to body J.

Since the frame (V)l has no relative angular motion with reapect to (Nl) the components

of mtbJ and LCJ are also constant in the (i1) frame. Usaing the following properties

(21)

we c n wrte: ( I @ 'I) TS + bTaw ll x ( ?i n + rot G I l)SI

and looking at eq. (18). we may suggest the following combinations:

L0 d+ Ki -(ijn + m-lIJ) 1(23)
where it must be noted that all vectors and tensors have constant components in te I'

frame.
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',rzi (23). equations 1t7). ([8) and (20) are now rewrittcn as

-fx(I-g) +(C*Ot ) rb-lv+iJJ 124)

V E +tb'x( g) , g-A 6 - W ,K~l wi

+ Ll) xi] W S D + J x F)inmblx V (25)

FJ ) e.uiiiPJ -g) + t) . (Zsi w rio T)rn-b 26)

[[us new presentation clearly shows that 153 is redundant. On the contrary 16J) can easily

be identified from (26) by choosing an excitation such that D~ - e. J Finally, the

idtnuflability of nmb5 can be analysed by meana of its individual contibution to L' given by

and by its conribution to F) given by .

This analysis leads to different combinations depending on the particular values of u'

dy7, nami gcra daeped expressions 7 n (28)alo thidnfctonftetre

copenuts ofstuing the dynamicorteeain model. Moevritg'so i the retonro uneccoincides

inrlueton of(27)ne vector caesi the parameter combinations (23)gmut cosuntlybe
aiei the iiyompbonent s ofu (i e. whic becomertredundantefo the dyami metode Tara er

dieunwof (2,In this case the component m4~, of m )along this direction it not

rcsults may be sumimarized as indicated in table 2 for tie dynami, model.
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tuareocit minimal set of "edefinition of the carrying body i
of body i body J parameters barycentric parameters

general caset ~ .m~ mb4 mb4 Tq mbI

erdnetally fixed : (imb,.b)b 1  
b+

O~i w (-Mi4 ) MWm= L

Table 2. Combination rules for prismatic joins in the dynamic ;'sodel.

Similar considerations can be applied to the reaction model in which less ctmponents ame
redundant because ihis model can retain all thse componients of relation (27) Th, results are
summarnzed as indicated in table 3.

angular i'elocit minimal set of redefinition of the carrying body I
of body i boyIprmts barycentric parameters

,ali neruasly fixed: ( . ib .mbb) 1b' 1 .m b' bJ

wIth 0 0 )p K I K+ KJ -mb (TIi tiJ lIt)

Table 3 . Combination rules for pnissaic joists in the reaction model.

For both moiels. the indicated rules mast be applied recursively from the end(s) of the 1
structure towards its base in order to determine the mimumal sets of parameters SJ for the

8 whole system
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R~3EVOLUE IOIN7

Thz anerilar velocriv and acceleralion of body Iare

+. (0wl e q 30

Fig. 7: Revoluec joint recursive model.

Since again no a priori assumption is made concerning the mobility of tho carrymng body i
for the general case. the vector forms of eqs. (6) and (7) are retained:

+W Mb 1(31)

11 x Elx + nbisx(Wi -g) 61 + T iXI i

+ IIJx b 6 @i)mab)+ L (32)
%her 6j&+(WXJ(W+ bjx~j.&)(33)

id d'.e dyna moic equation of joit) can ho written:I.

The baiycesrtec mass NJ does not appear anywhere in the equations and is therefore
redu-ndant. Using eqo (29). (30) and the following relation:

i3 iJ(5=a'+ + +3 2~(~

the properties (21) and (22) lead to ihe possible combination (23) defined in the case of a
prismatic joint. Ho%&cver. at the pretent caae. h~) aa a relative angvar motion with respect

10to J The only component of rnb) that remais constant in the frame X)is m14e In orderj

to determine which composens of KJ are concerned. it is decomnpovedl in an auxiliary frame

1:5 Z



'~attached to body iWithout loss of generality, this frame is chosen such that e-Z
D~ue to the rtatilon qi, the comoponents of lKJ in the ()basis are given by means of th.,

symmetric mateix

( os(2q5)Kd.sin(2q)K,Y+Kl,

coI q)'Y~i(q)) .cos(2q1)K)J+sin(2q))KJ,,l (3K)
cos(q)K ie)K oin(q)K os(q)KJ, KI

d 2 y

As prliinay esut.this expression shows that the compoets K{,, and KJ %~ill only

appear hog h combinations K), and K1
d The comtponent K) is obviously :denitfable io

P) via an excitation motion for which dj =W ~J The following combinations

mb*1 - bi+mba ej

Lo ii mb~5 i, i3+, _ij).- KI j J (38)I 5- are stall applicable, Indeed it is easy to see that if we introduce these combinations into
equation (31) of E'. then ue (35) the only residual ternm that involves mb independently is

and vanishes because DOJ 0. Introducing (38) into equation (32) of Li leads to the

following residual teens :1 ~J I(~(0

.sIuch vanishes for the same reason The individual contribution of mbl also disappears ini
34) Au a consequence. this component cannot be idernfied and is redundant. Similarly,

using 129) and (30), the individual contribution of IC, K~s jJ j) reduces in (32) to

and in (34)1 (to

Is is easy to venfy that both residual contributionis vanish so that KI is also a redundant
parameter.
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In tbie general case. ie when the mobility of the carryinig body is not restricted. all lie
~tircomponeitas ofnb5 and KJ are identifible in the dynamic model as well as in ahr

=uacon model [10.11. As for hei prismatic joint. ifQ eji s mncrally fi,;ed addtiuonal

,oipcnerts of nsla and LOS can disappear. Thfe'results ame summarized in tables 4 and 5

respectivcly for the dynamicd and reaction model.

angular Velocuty oi? minimal set of reldeflnition of the carrying body__ _ __ _ _ _ _ _ _ _ _

the carrying body I body j pameler, ba yinkl Parameters

general case (m4.mb : 4. KF b'n.b m,~
_______ Kd. IKL) K-- KI -mblo (i)9)+i) .)-K1 )9

9 * 115'

-i tab*'ib~ -Kl+ it

(KL) rnsb' - bl +mb J

Tabl 4 ombnatin rlesfor evoutejoints in the dynamic model.

angular YOICt f minimal se f redefinitdon of the carring body i
_he_________body_ bodyi j ame,. barycentric parameters

general case (Mnbl, iby iTOO - ,Ibl +mb$ S)
1qv~s ~ K'V 12 ) K'-1=K1-mb (TYV VoKji

Q1 ~k inby M . 1b - =~b ssb+ mb

Kxu.K4z, 4z) K- 61 -.inb (fiJ FJ + f~) KJ J

Y)rZ -j iby. ,M~l-nb +mt

and gg8 t) u Z, 4. IS ) 6-1 LO mib), + V

Table 5 Cc.ribination rules for revolute joints in the reaction model.



S. Application to the PUMA robot

-%cording to the recursive ruales given in table S. the redefined (non-zero) barycentrtc
paramneters 0* of the PUMA roo ate:

/ - .3 .3
F- mb 3  

mb, K
3
Y K 1 K', K

0 in Mb tb, K K. . 2K

wb, inbt, Kt K4 VS ~
among which thte minimeal set of non redundant parameters ts givenb

3 K; 3(b ;Y d K K1

Indeed, the arycenio Mtaases iii (tI. 3) are redundant wile mb; t  
a]~ ;

disappear because of the restricted tmobtlity, of body I (QO- 0, VI 2., and g 9.

For exanple the equation Q I of the first joint can be rewritten as follows: t

+K~xxqppl-2-S K-24.qjtpl.C22
-K~zz-~ppl-2-C2 K3d-qppi.CZ233t

+tC3xxqppl.S23.S23 +mbje.2.appl.23z.S2S23
4Y3zajppI.C23.C23 *lQ2yz-ejtp2.C2

Cnbh3z-2-qppl123z-S2.S23 +K3yz-epp2.C23
.K-lyz-eyplC2 +Kyz-epp3.L23
-K3yz-qpp2.C23 -K-2yz-ep2qp2S'2
-msb3y-eqPP223z-C2 .X3yz.-jp2-qp2-$23
*lc3yz-qpp3.C23 -K-24dq-qp~t2.S22
,K-1yzucp2'qp2.S2 .K3d-qpl-qp2-S2233[
*K3yz-qp2.ep2.SZ3 vmb3z.2.qul-qp2-12z.S223
*nah3y-qp2.qp2.123z-S2 .Kyz-Tqp3p3523
*KZxx-qpl-qp2.S22 .Kd-oqpp3S2233
K2az-qpl-qp2.S22 +mb3z.2.ejat-e;3-I23z.C23.S2

*lK3xx-qpl-qp2.S2233 *K3yz-2-qp2-qp3-SZ3
*K3zz-clpl-ep2S2233
-mble'2.qpl-epZ.123z.S223
*K3yz-qp3.qp3.S23
.IK3xx-qpl-qp3.S2233
*K3zz-(lpI-qp3.S2233
.-eh3z-2.qpleje3.I23z.C23.S2
*K3yz.2.qp2.qp3.S23
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6. Conclusions

N ".rsive method )f determining the minimum set of dynamic parameters of a tree-like
nultibody system has been presented. Uing simple rules, the numbe. of :odependant

dynamic parameters can bo determined a priori. Depending on the mobility oC ic first joints
of the kinematic chats. tis number is equal to or less than 4npntmatle 7nrevoj0t white the
total number of inertial parameters which as commonly used is given by 10(riprismatIc
nrevotute). The reduction of independant parameters due to restricted mobility is also
obtained from these rules in a straightforward manner. For instance, the first revolute joint of
die Puma arm being vertical, It can be seen from table 4 that 9 parameters disappear from iwe

dynamic model.
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On the Use of Linear Graph Theory
inMultibody System'Dynamics

J.J. McPhee
Systems Design Engineering
University of Waterloo, Ontario
Canada N2L 3G1

ABSTRACT. Multibody dynamics involves the generation and solution of the equa-
tions of motion for a system of connected material bodies. The subject of this paper
is the use of graph.theoretical methods to represent multibody system topologies %nd
to formulate the desired set of motion equations; a discussion of the methods avil-
able for solving these differential-algebruc equ tions is beyond the scope of this wok.
After a brief introduction to the topic, a review of linear graphs and their associ-
ated topological arrays is presented, followed in t-in by the use of these matrices in
generating various graph-theoretic equations, The appearance of linear graph the-
ory in a number of existing mulilbody formulations is then discussed, distinguishingbetween approaches that use absolute (Cartesian) coordinates and those that em-

ploy relative (joint) coordinates. These formulations are then contrasted with formal
graph-theoretic approaches, in which both the kinematic and dynamic equations are
a utomatically generated from a single linear graph representation of the system. T t

paper concludes with a summary of results and suggestions for further research on the
graph-theoretical modelling of mechanical systems.

1. Introduction

A muibody system is hereby defined as afinite number of material bodies connected in
an arbstrsry fashion by mechanical joints that limit the relative motion between pairs of V
bodies. Practitioners of multibody dynamics study the generation and solution of the
equations governing the motion of such systems. Several different approaches for sys-
tematically formulating these equations of motion have been developed, and encoded
in numerical or symbolic computer programs. Such programs relieve an analyst of the
error-prone labour involved in deriving the governing differential-algebralc equations
by hand. For the program to be applicable to a wide range of mechanical systems, the
topology of which is specified by the user at execution time and is not known a priori,
the underlying formulation must somehow represent the connectivity of tho, sytem
and use this topological information during the derivation of the equatiou of motion.

Linear graph theory is that branch of mathematics that studies the description and
manipulation of system topologies. Interestingly, the extent to which this theory has
been i:.corporated into current multibody dynamic formulations ranges from a hare
minimum, typically in approaches that use absoute coordinates to describe the motion
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o each body, to a maximum in tormal graph-theoretic procedures It is the goal ot
this paper to examine this apparent conundrum in some detail, by explicitly referring (
to a number of existing formulations

The paper oegins with a brief review of finite directed linear graphs and associated
mathematical theorems, followed by a discussion of the imminmal use of such graphs
io absolute coordinate formulations. This in turn is followed by an examination of
how linear graphs are used to represent system topologies in formulations that employ
relative joint variables as generalized coordinates. Finally, a number of approaches that
rely entirely on graph.theoretic techniques to automatically formulate the equations of
motion are described. The paper concludes with a summary of results and suggestions
for future exploitation of linear graph-theoretic methods in multibody dynamics.

2. Review of Graph-Theoretical Methods

The study of linear graph theory, one branch of the wider field of combinatorial math.
ematics, orgimated with Euler's famous solution [1] to the problem of the Kinigsberg
bridges in 1736. A complete review of the contributions to linear graph theory since
then is beyond the scope of this article. Instead, attention will be directed on those
graph theorems that have application to the dynamic analysis of multibody systems.
In consideration of the previous definition of a multibody system as a finite number of
connected bodies, a discussion of infinite or unconnected graphs is excluded from this
review. Furthermore, attention will be restricted to the study of directed graphs, since
their undirected counterparts find less application in multibody dynamics. In sum-
mary then, the following review is limited to connected fimt directed luitr graphs
and their associated mathematical theorems. For a more complete discussi n of linear
graph theory and its application to physical systems analysis, the reader is directed to
references [2.5).

2.1 REPRESENTATION OF TOPOLOGY

A inear graph is a collection of edges, no two of which have a point in common
that is not a vertex. In turn, an edge is defined as a line segment together with its
distinct endpoints, and a vertex (or node) is an endpoint of an edg.. The topology of
a .near graph is completely defined when one specifies which edges are incident upon
(connected to) each and every vertex of the graph.

To illustrate the use of linear graphs in representing topology, consider the diagram
in Figure 1 which depicts an electrical network consisting of two inductors (Li, L,),
three resistors (03, R4 , Rs), a capacitor (Co), and a voltage source (V). Figure 2
shows the .inear graph which is topologically equivalent, or isomorphic, to the electrical
network. This graph is constructed by drawing a node for each point at which two
physical elements connect, and by replacing these elements with directed edges on a
one-to-one basis. The direction (arrow) assigned to each edge is arbitrary and serves
only to provide a reference direction for "through" and "across" variables, which are

defined m subsequent section.
From the linear graph, one can construct the incidence matrix IlNJ which contains

a complete topological description of the original physical system. This is a v x t
matrix, where v ,s the number of vertices in the graph, and e is the number of edges I j
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R5  L2

Figure 1: Electrical Network Example

The (i,j) entry in [IN] is equal to (-1, +1,0) if edge j is (negatively, positively, not)
iacident upon node i. The directed edgej is positively incident upon node i if it pointstowards the node, and negatively incident if it is directed away from the node. As La
example, the incidence matrix for the linear graph in Figure 2 takes the form:

L, L3 R3 R4  Rs Cs V

a -1 0 0 0 0 0 1
b 1 0 1 1 0 0 0

(rN = c o 0 -1 0 0 -1 0 (1)
d 0 1 0 0 0 10

A -1 0 -1 1 0 0
0 0 0 0 -1 0 -1

i which the vertices associated with rows and the edges associated with columns have
been explicitly labelled. One can see from this example that the rows of [IN] are not
limearly independent, since their sum is a row containing all zeroes. The (v - 1) x e
reduced incidence matrix JAI is obtained by deleting any one row of (IN]; the
remaining rows of (A) are linearly independent, and the vertex cnreespondiag to the

deleted row is referred to as the datum node.
Au important concept in linea graph theory is that of a crcit, which is a subset

of a graph (or suhgraph) such that, on every vertex, there are incident exactly two
edges. In other words, a circuit is a closed loop of edges. With this concept, one can
define a spanning tree, which is a subgraph containing all the vertices of the original
graph, but no circuits. The (v - 1) edges in a tree of the graph are called branches,
whereas the remaining edges in the complement of the tree, or cotree, are known as
chords. One possible spanning tree for the graph in Figure 2 has been dawn with
thick lines and consists of edges Li, L:, R3, R4, and Rs. The remaining edges Co and
V comprise the chords of the cotree. Having defined the concept of a tree, two new
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Figure 2: Linesu Graph Isomorphic to Electrical Network

topological matrices can now be introduced - the fundamental cutset matrix and the
fundamental circuit matrix.

A cutset is a .ubgraph of a connected Linear graph such that, when deleted, the graph
is left in two distinct parts. A fundamental cutset, nr f-cutset, is a cutset consisting
of one branch from the tree and a minimal numl er of chords such that no subgraph
ofthe cutset is itself a cutset. As an exas'1l', the -Cutset corresponding to branch
L, in Figure 2 consists of Li and V (.o:u h..t uode 4 is not deleted along with the
utset edges and constitutes one of the two remaining parts of the graph). There will

be (v - 1) f.cutsets for a given lineav graph and tree, from which one can construct the
fundamental cutset matrix [CU]. The (i,j) entry of [CU] is zero if edge ; is not
in the f.cutset corresponding to branch s, and (-1, +1) if edge ) is in the f-cuise and
has the (opposite, same) orientation as branch s. With this definition, the (v - 1) X e
matrix [CU takes the general partitioned form:

[CUI = [I] I [A,]] (2)
in which [It] is a square uit matrix corresponding to the tree branches in the first

(v - I) columns, and [A.] is the remaining (v - 1) x (e - v + I) submatnx. For the
linear graph in Figure 2, the fundamental cutset matrix takes the specific form:

10 
0 00 

0 -1

01000 1 01
[CU] = 0 0 1 0 0 1 0 (3)

000 1 0 1
0 0 0 0 1 0 1

An important result from linear graph theory is that the fundamental cutset matrx
jCU1 is row-equivalent to the reduced incidence matrix [A]. In other words, [CU'

4.-
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need not be constructed using its definition - it can be obtained through simple row
operations on Al. Verification of this theorem for the linear graph in Figure 2 is left
to the reader.

A fundamental circuit, or f-circuit, is acircuit in which one edge is a chord from
the cotree of the graph, and all the remaining edges are branches. To illustrate, the
f.circuit corresponding to chord C6 in Figure 2 also contains branches L2, Ri, and
R4. There will be (e - v + 1) f-circwts for a given graph and tree, from which the
fundamental ircuit matrix [CII can be constructed. The (i,j) entry of [CI] is
zeroif edge j is not in the f.circuit corresponding to chord s, and (-1, +1) if edge j is
in'thief circuit and'has the (opposite, same) direction as chord j as one travels around
the circuit. With this definition, the (e - v + 1) x e matrix [CII can be written in the
general form:

ICI)= [(e) 11,)](4)

where [1a] is a square unit matrix corresponding to the cotree chords, and (Be] is the
remaining (e - v + 1) x (v - 1) submatrix. The specific form of [CI] for the example
in Figure 2 is: [0 -1 -1 1 0 1 0](ell 1 0 0 - I - 1 0 1 s

Another important linear graph theorem [6] states that the rows of the circuit am,
ouset matrices for a given graph and tree are orthogonal, or mathematically,

U CI][CUFT= [0) (6)

in which the superscript T represents the transpose operation, and (C) is a (e - v+l1) x .
t V - 1) matrix containing all zeroes, Substituting equations (2) and (4) into eqution

6) and re.arrnging, one can show that:

[e,] = -[AJl (7);
which can be verified for the linear graph in Figure 2 by examining the specific form

of equations (3) aid (5). [ st

In summary, the incidence matrix (IN) contains a complete topological description
of st given linear graph. The nonsingular reduced incidence matrix [A) is obtained by
deleting a row of [IN] corresponding to the datum node. By selecting a spanning
tree and numbering the fiust (v - 1) columns of [A) to correspond to the branches,
the fundamental cutset matrix [CU can be obtained through simple io'V operations.
This topological matrix explicitly shows (v - 1) independent ways in which the given
linear graph can be cut into two distinct parts - a result that is used later in this

paper to generate the force equilibrium equations for mass elements in a multibody
system without constructing the corresponding free-body diagrams. The fundamental
circuit matrix [Cl) can, in turn, be obtained directly from [CU using equation (7)
to construct the [B,) submatrix. Upon completion, [CII can be used to identify an
independent set of (e - v + 1) circuits in the given graph, an application of particular
relevance to the kinematic analysis of multibody systems with closed loops.
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2.2 GRAPH-THEORETICAL EQUATIONS

The circuit, cutset, and incidence matrices'have more than topological significance -
they can also be used to generate the governing equations for the physical system to
which the linear graph is isomorphic. This fact was recognized almost four decaucs
ago by, Trent j5j, who-introduced the concept of through and across variables in order
to se-tshp these equations.

Athrough~variable is a physical variable, associated with an edge of a graph, that
wouldbe measured by an instrument placed in series with the corresponding element
inthe original network. In the electrical network example in Figure 1, an appropriate
through variable would be the current through an element. For a multibody system,
the relevant through variables are forces or torques. Regardless of the type of physical
system, the above definition of a through variable guarantees that the 'Vertex Postu.
late", which states that the sum of through variables at any node of a system grapn
must equal zero when due account is taken of the os'entation of edges incident upon
that node, is satisfied for the linear graph. Esientially, the Vertex Postulate represents
a generalization of Kirchoff's Current Law, from electrical network tl.tory, that is up.
plicable to all physical systems. It can be expressed mathematically for all v nodes in a
graph by premultiplying the column matrix of through variables {r} by the incidence

matrix:
(IN](r) = (0} (8)

where (0) is a v x 1 column matrix of zeroes. .
To obtain a linearly independent set of equations in the through variables, (IM] in

equation (8) can be replaced by either the reduced incidence matrix JAI or the cutset
matrix [CU]. In the latter case, and using equation (2), the resulting equations can be
solved explicitly for the (v - 1) through variables {r -) associated with the branches:

{r,} = -{( ]{,{ } (9)

in which {r,) are the cotree through variables. If these latter variables are known, then
{rt, can be calculated directly from equation (9). It is for this reason that the cotee
and tree through variables are referred to as "primary" and "secondary" variables,
respectively. Using equation (3) for the electiical network example, equation (9) takes
the specific form:) fri 1 1

ra To r(10)

which is equivalent to the set of equations obtained by successive applications of Kir-
choff's Current Law to the network. 8

An across variable associated with an edge is a physical variable that would be
measured by an instrument placed in parallel with the corresponding element in the
physical network. In electrical systems, voltage is the most common example of such
variables, whereas in multibody systems, relative displacements, velocities, and accel-
erations are all appropriate across variables. In general, the derivatives and integrals
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of across variables are themselves across variables, as are vectors whose scalar compo-
nerss correst 6nd to cr s zaiibles. A rigorous definition of across variables is that
they satisfy th "Circuit Postuite", nanely that the sum of across variables around
tmy circuii of a graph must equal zero when due account is taken of the direction of
edges in the circuit

To obtain 'a linearly independent set of equations that are mathematically equvalent
to the Circuit Postulate, °ne need only premultiply a column matrix of across variables
{} by the circuit matrix, andlset the result to'{0}:

(cII(al = {0) )
Equation (4) can be used to express the (e - v + 1) across variables associated withthe chords {a,} as explicit functions of the tree across variables {a,:

Eui) = -[Bnes,) (12)

which is why{} is added to the list of primary variables, and (a,) is a subset of the
secondary variables. Using equation (5) for the electrical network example, equation
(12) takes the form : + 0 (

of -a" + 04 -+ a6

which is equivalent to the independent set of equations obtained by applying Kirchoff's
Voltage Law to the inner two loops of the network.

With e primary variables and another a secondary variables, the total number of
unknowns is 2e. Available for the solution of these unknown quantities are the (v - 1)
cutlet equations (9) and the (e - v + 1) circuit equations (12) - a total of e linearly
independent equations. The remaining e equations required to effect a solution are
obtained from the constitutive, or terminal, equations for each of the e elements in the
system. The terminal equation for each element expresses the functional relationship
between the through and across variables and the independent variable, time. As an
example, the terminal equation for the ideal inductor Li shown in Figure I would be:

rdr1 
"

"here al corresponds to the voltage across L i and ri represents the current passing
through the inductor. For a three-dimensional multibody system, the through and
across variables are spatial vectors and the corresponding terminal equations are vec.
torial relationships. Regardless of the type of system under study however, the circuit,
cutset, and terminal equations comprise a necessary and sufficient set for the solution
of all unknown variables as functions of time (6]. The advantage of using these for-
eal graph-theoretic techniques over traditional methods of formulating the governing
equations is twofold:

1. the topological equations are clearly separated from the constitutive equations
for the elements comprising the physical system under study, and
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2. ihere s a nuriber of standard graph-theoreti formuatons available i the liI -rature 2-5 for svstemateally esrtablisbng the govering equations - the pax
ricular choice" of formulation method is made based upon the desired final form
of these equations.

Finally, one may add that the systematic nature of formal graph-theoretic approaches
make them quite attractive if a computer implementation is desired.

Before ending this review of linear graph theory, an auxiliary set of nodal variables
are introduced. Essentially, a nodal vaiable corresponds to a physical variable tuat
would be measured by an instrument placed between (across) the relevant node and a
reference datum node. For an electrical network, the voltage difference between a node
and the ground would be classified as a nodal variable. In a mltibody system the
absolute diiplacement, velocity, or acceleration of a point relative to an inertial refer
ence frame all represent nodal variables. The reduced incidence matrix A provides a
convenient means for transforming between the nodal {77} and across {a} vainaoles of
a system graph:

enoa = (AlT{q} (15)

The nodal transformation equation (15) increases the total number of available equa.
tions by (v - 1), which corresponds to the additional (v - 1) unknowns, the auxiliary
nodal variables.

3. Absolute (Cartesian) Coordinate Formulations
Attentio- is now switched to the other main topic of this paper, the dynamics of
multibody systems. An example of such a system is the planar four.bar mechanism

shown in Figure 3, which consists of three rigid links connected by ideal revolute
joints to form a closed loop with the ground (the fourth "bar"). Assuming that a
time-varyng torque T(t) is applied to link 1, the goal of a dynamic analysis would be
to determine the configuration of the system at each instant during a finite interval
of time. To represent the configuration, a set of coordinates that uniquely describe
the position of each body in the system must be defined. The dynamic analysis is
accomplished by generating the differential-algebraic equations (DAEs) of motion and
socvIng them for the time-varying coordinates. This procedure has been successfullyattomated in a number of existing multibody programs using a variety of different

formulation approaches.
Several of these approaches make use of absolute coordinates, which describe the

position and orientation of each body in the system relative to an inertial frame of
reference. For body 2 of the planar four.bar mechanism, shown in Figure 4, the ab-
solute coordinates are defiaed as the Cartesian coordinates (z2, y:) of the mass center
C2 so the inertial XY reference frame, as well as the angle 

0 1 between the link and the
positive X a sxs. With three Obslyte n variables per body, the total number of system
coordinates (p is rune. Ob ously, these rine coordynates are not independent since
the four-bar mechanism has only one degree of freedom. The motion of individual
bodies is constrained by the presence of kinematic joints between adjacent links; rela-
tionships between the absolute coordinates are obtained from a consideration of these
holonomic constraint elements. Specifically, each pin joint requires that connected end
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Figure 3: Torque-Dniven Planr Four.Bar Mechanism

points of adjacent bodies remain coinident during any motion of the system. Mths- "

.maticaly, for the kinematic pair consisting of bodies i -1i ad i connected by pin joint

. - + oosLcosg - . + !cos e, = o (1 )

0 2

noting that l is the length of uniform link i, the terms Is, G0, i, and 8, ae constants

deii$the positions o fpi s a 4i i nertia reeecefee (17), o,=4

t 
set of eight

which, by themselves, 3:not suecient to solve for the nine absolute coordinate . To

obtain a second set of equations for the system, one a write the equations of motion

for each body in the system, by applying the bewton.Euier equations to a fee-body

diagram of each link. Note that the reaction forces R} in the pin joints enter explicitly

into these expressions. Assembling the nine differential equations for all three bodies

into a matrix form Five:
4 M.{ } + niIr{R) = 0Q.} (1)

n in which M is the generalized m su s matrix, {Q.} contains the applied fores tand

torques, and [sJ the Jacobian matrix of the constraint equations (18). in explit
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Figure 4: Free-Body Diagram of Link 2

form, the entries of [JJ are given by:

1., - (20)

Together, equations (18) and (19) constitute a set of seventeen differential-algebraic
equations that can be solved for the nine absolute coordinates (p) and eight reaction
forces {R} as functions of the independent variable, time.

The approach described above has been extended and applied to the analysis of
three-dimensional systems of rigid and flexible bodies connected by a wide variety of
general holonomic and non-holonomic joints (7.13]. Due to its simplicity, this formula.
tion can be readily implemented in a computer program that automatically generates
the governing DAEs for a given mechanical system. A library of constraint equations
for a variety of kinematic joints can be created in advance and used to generate the
relationships between the absolute coordinates of two bodies connected by a particular
type of joint. A second library containing the corresponding Jacobian matrix for each
joint can also be created, and used to generate the system Jacobian matrix [J] by
meant of an assembly process similar to that employed by the finite element method.
The generalized mass matrix (M.) and forcing vector {Q.} can be constructed directly
from the input data provided by a user. Thus, all terms in the governing equations(18) and (19) ca be obtained untout wing methods from linear gruph theory. As

Haug [91 has observed, the use of absolute coordinates in the underlying formulation
results in a "bypassing (ofi topological analysis".

Otla-dea et a 110) have used an even larger set of absolute coordinates than that
described above in order to maximize the sparsity of the resulting DAEs, which are
subsequently solved using sparse matrix methods and an implicit numerical mtegration
routine. It is worth noting that these authors make explicit reference to the similarity
between their derived equations and those arising in linear graph theory; specifical),they observe that equation (19) from their paper represents an assembly of the circuit,

curset, and terminal equations that would be obtained from a network model of their
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multibody system. In spite of this comparison, the authors assemble their equations
without exploiting the systematic nature of a graph-theoretical approach. Gitadin [111]
uses absolute coo:dinates in a finite element formulation of the equations of motion
for fexible multibody systems. Once again, the use of such coordinates eliminates
the need for linear graph theory since, as the author points out, "the topology of the
articulated system is automatically embedded into its finite element description."

4. Relative (Joint) Coordinate Formulations

A second means of representing the time-varying configuration of a multibody system
is through the use of relative coordinates. These coordirates describe the relative
position and orientation of two adjacent bodies in terms of variables associated with
the kinematic joint connecting the two bodies. A joint that allows ) degrees of freedom
(where 1 -< 6) contributes j variables to the set of system relative coordinates {q). As
an example, the relative rotation between any two links in Figure 3 can be described

by a single angle corresponding to the revolute joint connecting the two links. The
complete set of three relative coordinates for this four-bar mechanism can be defined
in terms of the previous absolute coordinates:

01 9I

= 0- (21)
=3 03- 02

corresponding to pin joints P1, P1, and P3. Note that it is not necessary to define the
position of link 4 (the ground) relative to link 3.

If the multibody system has no closed loops, i.e. it has a "tree" topology, the set
of relative coordinates is equal in number to the degrees of freedom of the system.
As an example, if pin P4 were removed from the four-bar mechanism, the resulting
open.loop system would have three degrees of freedom. Using relative coordinates {q},
the eqnations of motion for such a system can be wrillen in the form:

[M.J{ } = {Q,(q,4,t)} (22)

noting that reaction forces and torques in the joints have be4n eliminated from these
equations using either an analytical approach (eg. d'Alembert's Principle or Lagrange's
equations) or a systematic substitution process [14) in conjunction with the Newton.
Euler equations. Equation (22) constitutes a set of ordinary differential equations that
can be numerically integrated to obtain the relative coordinates as functions of time.

These same equations can be used to derive the DAEs governing the motion of a
multibody system with closed loops. In this case, the relative coordinates are no longer
independent and are related by the set of nonlinear algebraic constraint equations:

{'P(q) = (0) (23)

corresponding to the equations guaranteeing closure of an independent set of loops.
For the four-bar mechanism, these loop closure equations can be obtained by summing
the eight joint constraint equations (16) and (17), resulting in:

s10cos90 + lIcosBi + l2 coS 9 + scos~s - 14 cosG4 = 0 (24)

141



l$io , 1%$in01 1 sins 2 ssIns - 14s5n4 0 25,
Definig to new constants ,C and C. that represent the distance between Dis P.

and P4 in the X and Ydirections respectively,

C, = 14COs 4 - 1oCOS0o t26)

Cy = 1,sin4 1 - lsin s (27)

and using equations (21) to replace the absolute coordinates with their relative coun-
terparts, the constraint equations (24) and (25) can be written in the desired form:

91'P = 11iCOS 51 -r lCOS(01 + 02) + 13 COS( X -r 03)e - C.= 0 f*25)
2': = lIsinct -,- lssin( , + ) + 13sin(c: +02 ) - C, = 0 (29)

The fi al set of DAEs is obtained by removing from the system model one kinematic
joint for each independent closed loop. The motion of the resulting open-loop system
is governed by equation (22). By adding to this equation terms corresponding to the
reaction forces and torques in the joints that were removed, the differential equations
for the origtnal system with closed loops are obtained:

[Af,J{f) + (Kjr{,) = (Q,} (30)

where (A) is a set of Lagrange multipliers, and [K] is the Jacobitn matrix of the loop
closure constraint equations:

Equations (23) and (30) constitute the final set of DAEs for the multibody system,
expressed in terms of relative coordinates. One can see that they are similar in form to
the corresponding equations (18) and (19) in absolute coordinates, but are generally
fewer in number. The generalized mass matrix [M.1f is smaller and less sparse than
its absolute counterpart (M,.), and the generalized forcing vector (Q.} is a complex
function of the relative coordinates, their derivatives, and time. Even though the
loop closure equations (23) have a higher order of nonlinearity than the constraint
equations (18), the smallcr set of DAEs for relative coordinates can be solved more
efficiently than its counterpart in absolute coordinates. However, as Nskravesh r8l has
pointed out, this computational advantage is offset by .e additional labour required
to generate these equations.

One source of this additioni labour is the requirement for topological processing
when relative coordinates are employed. The reason for this is simple: regudiess of
the type of approach one uses to derive the differential equations (30), one needs ex-
pressions for the velocity (eg. to formulate the kinetic energy for use with Lagrange's
equaions) or the acceleration (eg. using the Newton-Euler equations) of each body
rehahve to an snertal frame of reference. For a particular body m,, one can obta.
these expressions from the relative coordinates and their time derivatives only if one
knows the identity and ordering of the intermediate bodies connecting m, to the in.
ertial reference frame. In brief, a mathematical description of the system topology is
required, such a description is convenently provided by linear graph theory
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that takes the general form:

(W [So) I)(2[[3 Is i t J (32

or specifically, for 'he linear graph of the four.bar mechanism:

[W)= 1 0 (33)
0 -1 1 0
0 0 1 -1

Upon examination, one can see that the matrix [W) is exactly the negative of the inci.
dence matrix [INJ defined in Section 2 of this paper. The first row of [W] corresponds
to the datum node, and the (*) superscript is used to identify hinges in the cotree ofthe graph. Therefore, the n x n submtix IS), where n is one less than the number
of nodes (bodies) in the system, represents the tree portion of the reduced incidence
matrix [A]. The inverse of this matrix was first introduced by Branin (17) and called
the node-to-datum-path matrix", since it can be constructed by examining which
edges le in the path between a given node and the datum node.

Unaware of Branin's previous work, Roberson and Wittenburg (18 re-invented this
matrix, called it simply the "path matrix" [TI, and verified the relationships:

(TiT(Sol T 
= -{I} (34)

[(Ti[S = (SJ[T[ = [1) (35)
where {1} is a column matrix of n elements, each equal to 1, and [11 is the n x n
identity matrix. Wittenburg 1141 makes extensive use of the IS) and IT) matrices
to derive the differential equations (30) for a multibody system. Unfortunately, the
generation of the constraint equations (23) is only presented by way of three example
analyses. This drawback was subsequently addressed in (19], in which Wittenhurg
presents a systematic procedure for formulating the loop closure equations, once again
making use of the topological matrices [S) and IT).

It is interesting to note that formal graph-theoretic methods can be used to derive 1-
many of the equations appearing in Wittenburg's formulation. To do so, one must
identify a set of through and across variables (5) that respectively satisfy the vertexand circuit postulates for Wittenburg's linear graph. The relative rotational velocities
{l} form a natural set of across variables for this graph, and must therefore satisfy
the fundamental circuit equation (12): (

{} = -(B,){,}36)(36

where {l}and {fl,} correspond to hinges in the cotree and tree, respectively. Recall-
ing equation (7) and using the interesting fact [17,19) that the path, reduced incidence,
and cutset matrices are related by: I

ITI[S'i = !A,] (37)
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Sheth and Vicker 15: recognized this fact over two decades ago, when they usea
R aiton's Prtnciple and relative coordinates to formulate the differential equations
for % mulitibody system conststing entirely of closed kinematic loops. To obtain the
supplementary -et of loop closure constraint equations, the authors construct a stmp.c
linear graph representatton of the muittbody system, in which nodes represent hnks
and edges represent kinematic joints. With tins linear graph, the authors are able
to derive an independent set of loop-closure equations that are equivalent to the
fundamental circuit equations, with the relative coordinates playing the role of acrossvariables. Furthermore, a graph-theoretical algorithm tn employed to mimmize the

number of joints appearing in the final set of independent loops. It ts possible to
identify further equivalences between the equations derived by Sheth and Uicker and
the graph.theotetical circuit and cutset equations; the interested reader is referred to
the thesis by Li 116!

In the first monograph on multibody dynamics, Wittenburg [141 makes airect use
of linear graph theory to represent the topology of a system of rigid bodies contaiUng
both open and closed kinematic loops. Similaxr to the model employed by Sheth and
Uicker, rigid bodies are represented as nodes of the graph and hinges between bodies
aopeLr as edges. Wittenburg's graph model is more encompassing however, since is
"hinge" has been generalized to include springs, dampers, and other coanerions hav.

ing six degrees of freedom. In addition, Wittenbarg makes explicit use of a "spanning
tree" that is consistent with conventional graph-theoretic methods. For the four.har
mechanism, the linear graph thus defined takes the form shown in Figure 5. The fournodes have been labelled as mi, where Yn' represents link s, anad the hinges labelledP, correspond to the four pin joints. The edges comprising an arbitrarnly-selected tree

are drawn as solid lines, while the one eotree edge is dashed.

M2

P11
1 

3

Figure 5: Wittenburg's Linear Graph of Four-Bar Mechanism

To represent the syssem connectivity, Wittenburg defines an incidence matrix I IV
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one can venfy that equation (36) is identical to Wittenburg's equation (5.211), which
is used to find an expression for the virtual work done in cut (cotree) hinges.

An appropriate nodal ncriable for Wittenburg's graph is the difference between the
* absolute angular velocity of each body and that of the base body (node):

,= W (38)

A subset of the nodal transformation equation (15) can be used to relate this setof nodalvanables (q)} to the tree across variables {11j}, if one recognizes that -[S,]

corresponds to the tree portion of the reduced incidence matrix [Al:

{fl,} = -[S]
T

({ } - os{1}) (39)

Premultiplying equation (39) by -[T]T, one obtains Witteuburg's equation (5.122):

f [} - T{a ,}s+o{1} (40)

which is subsequently used to obtain the differential equations (22) for the open-loop
(tree) portion of the multibody system. For a further discussion of the relationshipsbetween Wittenburg's formulation and formal g:raph-theoretic methods, the reader is
di ected to the forthcom in g paper 20 . ki e m ti

If one is only interested in using the topological description to generate kinematic

reltionships, then alternatives to a linear graph representation are available in the
literature. As an example, the tree topology of an open-loop multibody system is
represented by Huston and Passerello (211 using a "body connection array", which
is subsequently employed by Amirouci e [22) to generate the loop closure equations
for a general system of rigid and flexible bodies. Nikravesh and Gim [23) transform
the absolute coordinate DAEs (18) and (19) to the set of equations (23) and (30)
in relative coordinates using a topology.dependent velocity transformation matrix;
Kim and Vanderploeg [241 have presented a systematic procedure for constructing
this matrix using a modified version of the path matrix [T), in which all -l's are
replaced by +'s. Pereira and Proenda [25) have applied a similar transformation
to the DAEs for a multibody system containing rigid and flexible members. Hiller
absolute to relative to (in some instances) minimal coordinates, using the concept of 1
a "kinematical transformer" to represent a closed loop; the topology of the complete
system is contained in a block diagram of these kinematical transformer elements.

Using a linear graph representation similar to that employed by Witteniburg, Hwang
a, Haug (27) have developed a recursive formulation for a system of rigid bodies with
dosed loops, and implemented this formulation on a computer with parallel psocessing
capabilities. In a subsequent formu!ation for flexible multibody systems, Lai et al (28]
achieved a greater degree of parallelism by defining an "extended graph" in which nodes
represent reference frames attached to bodies and edges represent the transformations
between these frames. It is interesting to note that this graph representation is very
similar to the "vector-network model" first introduced by Andrews and Kesavan (29],
which is discussed further sn the next section.

145

L j

u nu r , nnn u .



"'II S. Graph-Theoretic Multibody Formulations

in the previous section, it was - -own how a number of current multibociy dynamics
formulations use linear graph th ry to represent the system topology and to generate
various kinematic relationships. he difference between such approaches and a formal
graph-theoretic procedure has been summarized by Li (16]:

"To appreciate the difference between an ad hoc application of graph theory
to' dynamics and a graph-theoretic approach, one must understand that
a terminal graph (edge) is part of a mathematical model of a physical
component. If the individual system components are modelled properly,
the resulting system graph will automatically satisfy the cutset and circuit
postulates."

As discussed in Section 2, if each edge is associated with a physical component and
a consistent set of through and across variables is chosen, then a graph.theoretic
formulation will automatically provide a necessary and sufficient set of DAEs. In the
formulations discussed in the previous section. the edges did not correspond to physica
components but simply represented the connectivity of the system. It is impossible to
obtain the dynamic equations of motion directly from such a linear graph.

One of the first applications of formal graph-theoretic methods to multibody dy-
namics resulted in the "vector-network method" of Andrews and Kesavan t29]. This
graph.theoretic formulation was used to systematically derive the equations of motion
for a three-dimensional system of particle masses. More recently, it has been extended
to the analysis of two-dimenioWa (16) azd three-~imensional (30! constrained mechasi.
cal systems. To better understand this formulation, consider the vector.network model

of the four.bar mechanism shown so Figure 6. In this graph representation, edges rep.
resent the position vectors corresponding to physical components while nodes represent
connection points between these components. In addition to representing the three
rigid bodies therefore, the edp ze Yni, mls, and m3 locate the mass centers Of these links
relative to a datum node (Dr e :d in it,, '4l space. Similarly, edges rs and rs represent
the points where pins P1 and ?, attach to the ground. The "rigid-arm' elements i. to
it, correspond to body.fixed position vectors from the mass centers to the points on

each body where the revc.ute joints are connected. The driving torque is represented
by the edge T12, while the remaining edges his to his correspond to pin joints P to
P4, respectively.

The vector-network graph is significantly more complex than its counterpart in
Figure 5 because it contains dynamic, as well as kinematic, information. The existence
of torque and mass elements in the vector-network model is evidence of this. Of
course, the vector-network graph also contains the topological information provided
mass and torque elements, and contracting each combination of kinematic joint and

connected rigid-arm elements into a single edge.

To generate the system equations using a graph-theoretic approach, a tree is selected
that contains elements I to 11, with the torque and kinematic joint elements placed in 4
the cotree. A suitable across variable is the position vector r, corresponding to element
s in the graph, while the force F in this element is identified as an appropriate through
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Figure 8: Vector.Network Graph of Four-Eur Mechani;sm

variable. For each pin joint element is, one can write the terminal equation: ,

r, =-o (41)

recogniing the fact that the two points (nodes) connected hy a revolute joint remain
coincident for any possible motion of the system. With this terminal equation, the
kinematic constraint equations can he systematically generated using the fundamental
circuit equations (12) for the cotree pin joints. As an example, the circuit equation
corresponding to kinematic joint ', i4 (Ps) is:

Th egt ontait = rs + r..- r - r = 0 (42)
The ~gh costrintequations (16) and (17) are obtained by resolving the vectorial

circuit equations for the four pin joints into components parallel to the inertial Xand
Saes. In a similar systematic fashion, and recognizing the fact that the terminal

equations for the mass elements correspond to the vectorial Newton.Euer equations,
the cutset equations for these tree elements result in nine scalar differential equations
in which the reaction forces in the pin joints appear explicitly. One can see that, as
a consequence of using absolute coordinates to represent the position and orientation
of each mass element, the final set of DAEs generated by the vector-network method
corresponds exactly to equations (18) and (19).

Using an analytical substitution procedure, Li [16] has reduced this set of DAEs
to the smaller set corresponding to equations (23) and (30). More recently, Bacsu
and Kesavar' [31J have derived t~ese latter equations directly using a linear graph

i model simila to thet employed by Wittenburg, relative coordmnates, and a formal
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rraonvtheoretic approach. As discussed in Secton 2 and demonstrated above, such
," r)acn provides a systematic formulation procedure in wnicn the topological equa.
t,ons are clearly distinguished from the constitutive equations This has the impor.
tant implication that new types of mechanical elements, modelled by suitable terminal
equation . can be incorporated into the rnultibody system model without altertng the
underlyir, formulation procedure With this in mind, efforts are currently under.
way to incorporate nonholonomic joints, fleable bodies, aid variable-mass elements
into existing vector-network formulations. One further advantage of a graph-theoretic
approach is that it can provide a single unified formulation for systems containing
elements from different physical regimes, eg. hydraulic, pneumatic, or electronic el.
ements. This leads the author to be optimistic about the future application of the
vector.network method to the growing field of mechatromcs.

6. Conclusions

To develop a dynamic formulation that is applicable to general mulibody systems
with open and closed loops, some means of representing the topology of the system
is required. If one uses absolute coordinates to describe the location of bowies in
the system, the topological description is automatically embedded in the relatively
large set of DAEs. If one uses a set of relative (joint) coordinates however, some
form of topological processing is required in order to account for the connectivity of
the bodies. To represent the system topology and to generate some of the required
kinematic relationships, several researchers have made use of linear graphs and their
associated topological matrices. It has been shown that many of these kinematic
relationships are equivalent to the equations obtained from a formal graph-theoretic
approach. The advantages of using such an approach have been discussed, and the
systematic generation of the govering DAEs using the vector-network method has
been described. Research is underway to extend this graph-theoretical method to the
analysis of flexible multibody and mechatronic systems.
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A RELATIONAL DATABASE FOR GENERAL MECHANICAL SYSTEMS

C. HARDELL A. STENSSON AND P. JEPPSSON
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Depanens otMerhcl sEnineering
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S -9717 Lled
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ABSTRACT. This paper provides a speciian of a reltuinal database structure for mecaical systems
Throughs the example provided. a robot gripping device. it i demostrated how the initial devel opment of the
database structutre has niccessadlly led to an implementation in a practical software environment. The database,

isacable to multiple engtsaerng application programs ind supports a flexible envinment for dhe con-
simut; development of new appliecons

The egneigprocess thedsgigadmnfcung ehnclsytm s now going

are involved in the early stgso h eeomn ftepout h eei fhstechnique is th
abiiy to makce correct decisions;nt earl tie ftedsg of a product Tins of course reduces

re-woric. improves quality and saves money compared with the traditional way of design where for
eample simulations of produce performanice were carried out in a laze csae of the produce develop.
mem tuie when changes are epnie

To ease engineering, several computer aids have been developed. Imiportant tools are program
for Computer Aided Design (CAD). Finite Element Analysia (PEA). Computer Aided Manutacoi.

Ig(CAM). Multihody System Analyais (MSA) and special purpose simalations. These tools can he
usdsucccessfully one by one but the large benefits are gained first after an umegranton where data

created or changed in one application unmmesiately can be used in the other seeps of the development
process. For example it should be possible to use the geometry of a solid model, already defined in a
CAD program. when cresang a FE model or generating NC-code in a CAM program The admin-

tianon of deta in preferably carrned out with tire product data stored in a ceniral database which is
posible to access from all applications, see Figure 1.
In this paper modem database trchniques are demonstrated in the analysis and design of

mechanisms. In particular the generality and the easy accesis and alteration of thediatoi the database
iorntfrutidysystem anayss Seeierd Figur 2a wheree Ssson ofe prdc aaaeadepecrfothean ch frm
ipratfrmlioysystem arecnierd nhapelcses. onete produe dathae 'iain e fal teprt whcfrem

Figure I has been divided into "Strength of Maixiial" and "Muloibody System Analysis'.
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2. Daabs for Mecanicaldz:Systems ~
Wspen desunnmchau ssesosfrnxml vehicles, robots and NC-machines a motn
aspect of the mrantion of the product is its dynamial behaviour. It is therefore important that stmu-
laon and analysis software for the dyamical behaviour of a product is integrated in adesign system.
A huge number of methods and soft ware have been deveope which aIlow the atomac formula.
con and solving of the equatons of mouon by the computer for many types of mechancal systms.
Summaris of computer codes for si iuli6n"mulibody dynamics are given in (II and (2). The
aujubody systems are built of rigid and/or flexible bodies with mesma and springs, dampers and

force a nators, inerconnected by joints. nid beanugs and suppots Fricuon forces, contact fo z
and consraints may also be included. Informanon about these components can be included in the
database,

Ifniechaimcal -1stems are to be stored in a eneral form in a database th appropriate and sufficient
informaton about the mechanism has to be defined. The dam of the mechanical system is preferably
defined independently of the formalism applied for the generanon of equations of moion and are
extracted from the geometrical description of the system. Since nwer and better tools are developed
rapidly it is important that the design engineers are able to change computer tools whenever
necessary. To make the desin system robust ad independent of the specific applicanon programs,
the product database should be independent of the applications which are acessing it.
qured interfaces between programs. The effort when adding a new application is then substannally

reduced since the applicatson only needs to communicate with the datthae
Using the geometry dam and the resuiung time historica of the dynamical behaviour of the me.

chanical system, the moton can be anmnid. T s is a favourable approach for debugging of the
mathemancal model, t obtan an overall idea of the mouton and for pinpointing specific problems
such as improper connectivity, misapplied motiom or forces. unwanted oscillatory behaviour and
cleracce problems. Therefore the geomeuy (curves. rurfacs etc.) should also be esly accesble
from the datams

2.1 .MECHANISM DATABASE STRUCTM AND TABLES -AN EXAdMPLE

The demands abve can lead to the database sunuute of figure 3. In this database stu~cture. a

mechanism is defined as a collecton of ngid bodies that can move relative to each other, with joints
that lmit relanve motion of pairs of bodies. A reference triad is a local coordinate system that con.
sists of an origtn and three axes. x. y and z. Each reference mad is attached to a ngid body at a
selected location. The location and orientation of a joint am defined by a pair of reference triads
associated with two ngd bodies. The location of a force is defined by a reference tiad Stiffiesses
and dampings between rigid bodies are defined between pan of reference oads.

The motion of a mcrhanism its driven by loads. The loading may be gravity, applied forces, applied
motion and inial conditions. The varianons of applied forces and applied motions can be described
by input functions. The geometry of each ngid body is defined so the object table and its sutables.
Observe that s database structure is flexible and can be changed according to the user's desire.

Tables corresponding to the database structure so Figure 3 am shown t filgure 4. At the top of the
tables the sable name are located, followed by the column names. The coupling between the tables
are made by key records which are markd with lhies. The different sables contain records of the
different dataypes. imnger. character., real and double precision.
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Figure 3. The m MOCIIISn dAtabas soceur. A single lie illustrtai oeto0one relatosshp. for example w c
seommn of one nlid body is described by one obeam deflaiosoi A fork illustrues £0we8t0 several relaot- 1
slops, for exniple a inechanosm ccossm of more thm on igid body.

As an eample the table joint is described below. The desrptive ioformation in the tablejoint con.
sists of six records. joint no is an integer value identifsog th. specifi jobnL Joint nam is acharacter
string containing the namec of the specific jint. ref jad_ andl re/jriad2 wre integor values point.
ing at the two reference ends in the re Fiad tabl asscaed with the jomn Join:rl'vp. s aut integer
value descrihing which typ of joint itis. examples are revolote joints (1), sliderjoiots; (2). ball joints
(3). cylinduical joints (4) and planar jotnts; (5). 'The las record it user~fiag. is an integer flog that is

inov5 fo Ouser spclcInforiatinn.
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2.2 ESSENTIAL CHARACTERISTICS OF ENGINEERING DATABASE MANAGEMET SYSTEMS

When engineering database managem sd vems are to be chosen some agg enia ch rinnsucs
¢ have to be consiqdered (3-7].

An engeeng eas n be accessible to mulniple engineering application programs and it
must also supporl ao environme t for the conuining development of new appfcanons. Applcaton
programs use dielent represenainons of the same objects to achieve the most effictent solution to
the partcular problem they a designed to solve Ths imples tha the datbase schemes must be
flexible enough to support mulac ple viws of the data in the dattabs well as mod scation and

rxte' ion of the schemes. hle man pul on of dta must ilude the opsyions ue delte and
query, Da a models for design oftea bst Schemes should prfcerably support engineeng data types
(vector , mangcs etc.) and the complex objecti ofsfound en anneeng x applica oofs a

An enginring database system should pro inde a facty for mansing ntgry consant on the
dataas and should automatically maintn a consistet database stat. The contrl of conststency of

the data should b included m the appcaions or te sxecuytve of the system. The exccurve is a
ommand promsor that assembles inform ond e aunche application programs. accumulates per.

forhme e predic shons, and provid s contnol ove o the process by the o c t i3-5].
in order to support uess of the database by tnghineg Apcano, code, the datbse system

must have a host lahguge ntefc a Bectos of he imou of engineering ug a s done nFortran. the interface should include access for at least this language. The Sys=a~ executive should

use queti languhes em b oede v eo the host lguage to access the formation l the daba San.
dd quy languaes fiRI the ex0tht feibility o te rationale expert. Al tye of dat
(adrums r ve. m chakin cl t .) should b avale wtth the same qu anguage .

A product development syte reuie a system exeutve tha controls the execution of apphi.

canotf programs a o mdata use s t per dat intemtcs support u puites networkng
capab ilts and d r ibued comput ng. The execuve sys u must suppor multiple and cocIurte
usersb who may oprat l uster i s atch t wodo or iel ss atvasy.

database managem system should not impos constare v on a projeet.d seuece of activies in the
design proc iess. Concurrent users musn hive access to the systco symultaneously dependently of
thei actvies. Tin s s one of th e foundaons of simuean o wngo prtrg r s.

, 2 3 TH CHOSEN SYSTE M SOLUTION

Ou solu on totin data t t e datasvelop th databa using the raueiona database ma e e.
ment system ca11od IN FORMX [9.101. The flexibility of the rlatnmW dat model is the important
property making it adaptable to the needs of engineerng databas momasement (4). INFORMIX

consists of useful programs or modules tha perform da f mae rment tsks The manpulaton of the
dat as per'formed using the stanar d igh level languages SQL and, 40L ( 10]. INFORNUX supports

dsibuted processug whch allows users across the nawok to ea ncy tio thesameds ae
The database saucture described in Figure 3 and 4 has been drmplemented in the thn relationaldatbase management system as part of a software development project. carrid out at the Division

ofComputer Aided Design at Luled Universty of Technology, Sweden.
The hand' ng of consistency nmunamua.= can be divided into two pants. Ftmt there as c on.sstency

check when inerig data into the database Records tha must have a value are not allowed to be
cosistency should occur it is elimnatd through an administrative f~uton that deletes all t ifor-

The communication between the databsse. the applications and the user intsface are taken care of
and controlled by a central execunve
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3. Examnple - a Robot Gripprssg Device
7efollowing example iL~sn~sze bow the propoed~ system operates when processing a typical mne.

devices tgand lft a cylm er with adimeer of 50mnandaimass of 5kg, seeiguire 6.The

frtstage in to identify die geometry of the individual paris in tie mechanism. This can be done in
an utbeCEsystem We have chosem to define Wec gripping: device using die program 1-DEAS

Figure 6A rbot wih agnpptg esice
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4.- GRIPPING..LEVERI ,-'

3 - PISTON

2.~~~~ -OPitI-6 GRIPPING-. LEVER2

I. -HOUSING 5 -COUPLER2

Figure 7 The robot gripping device,

The pipping device shown in Figure 7 consists of six objects. The objects are modeled and their
corresponding physical characteristics Are defted. Then the device is t. embled a&d its joints. ap.
plied motion and applied force$ are Added to the synwos The bodies are connecied by seven joins.

olute joints connecting GRIPPINGO.LEVERI vith COUPLERI. GRIPPING..LEVER1 with

HOUSING, COUPLERI with PISTON. COUPLER2 with PISTON. GRIPPING-.LEVER2 with
HOUSING and finally COUPLER2 with GRIPPINO..LEVER2. Here the piston is forcd by n
applied motion which is proportional to time. When the mechanism is defined the analysis cnn he
made using diMet=t compar codes. depending on the specific tasks. In this example the cask may
be to mnke sur that no pats are tinerlining. that the main fuanction is fulfilled i.e.. grpping a 50mmn
cylider and thet the design will have enough strengib.

To be able to ake the analynis in any suitable software the aecessary information of the machia.
nssta is transferred to the nouinil form described in Figure 3 and Figure 4. Thin is done by readig
from the relantial database PEARL wittin the I-DEAS system to the mechanism database devel-
oped in INFORIX as described above. Examples on data in the tables in the product database for
this mechanism Are shown in Figure 8. The application programs may extract the suitable informa-
son from the database using the query larguage. The inwefaces can now be wrnen mn embedded
Fortran )r 4GL (10) for automatic transfer of the data to a suitable forma for the application

program.
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4 Discussion anid Conclusions

Simultaneous engineering demands a fsH integration of engineering computer tools. The integration
is preferably cairned out with the prcduct data stored in a central database. a system executive that
controls the execution of spplscaticn programs. a database management system. usia interfaces, sup.
pot utilities. networking capabilsties and distributed computing.

The product data of a mechanical system is preferably defined independently of the formaismn
applied for the generation of equations of mnoon and are extracted from the geometical desciption
of the system. Since newer and better tools are developed rapidly it is important that the design
engineets are able to change computer tools when necessary. To make the design system robust and
independent of the specific programs, the product database should be, adependent of the applications
accessing -t. Using a commton database for all application programs; also reduces the number of
requited interfaces between programs. The effort when adding a new application is diesubstantially
reduced since the new application only needs to comnmunicate; with the database.

This pape provides a specification of a relational database sicaire for mechamical systems.
Through the example provided. it demonsrates bow the initial development of the database structure
has successfully led to an implementation is a practical software environment. The database is ac-
cessible to multiple engineering application programs and support a flexible environment for the
contiung development of sew applicantons.
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A METHOD FOR LINEARIZATION OF THE DYNAMIC EQUATIONS

OF FLEXIBLE MULTIBODY SYSTEMS

Y. LI and C. GONTIER
LMSS. Ecole Centrale des Arts er Manufctures
Grande Vole de Vignes92295 Chatenay.Malabry CedexI

~FRANCE
ABSTRACT We propose a simple method for the linearization of the nonhnear dynamic equations.

which are estabhished in our case based on the Kane's vitual work principle. The system generahzt
variables used in the equaisns are the reference coordinates at the connections for the ngid body motions
and the time derivatives of the body modal coordinates for the flexible body behaviors In the hneanzanoi
precess. the paru denvauons of the kinematic terms with respect to the generalized coordinates and to the
generalized velocities have to be performed In our method, these partial derivatives are yieldud throgh the
first and second order time defivations of the body rotational absolute =gulu velocities and through the
rest, second. and third order time derivations of the mass center vectors, respectively. This ,s the key point
of our method. The pasoal denvation of the mechanical terms. e g. of the inertial tensors etc. are also
calculated We have developped the specific operators to perform the time derivations without
distinguishing the ngid and flexibtle variables. This method makes both the theoretical deduction and the
programnintng relatively simple. and allows a rapid computng.

I. Introduction

Mianv mechanical and structural systems such as vehicules, manipulators and aircrafts.
consist o1 interconnected components that undergo large rotations. The characteristic of
such flexible multtbody systems ts the high degree of nonlineanty of tts dynamics. An
accurate mathematical model for these systems has to account for inertial, centrifugal, and
Coriolts nonlineanues due to large body motion. The tendency, especially in aircraft and
robotic industries, to produce systems with lightwetght components that operate at very
high speeds enhances the demand for such accurate mathematical models These systems
incorporate vaious types of driving, sensing, and controlling devices worlng together to
achiee specified performance requirements. However, many of these systems exhibit
serious vibrations that cause damage to the system components. at least a deviation from a
requ'evk performance. The dynanuc analysts and control design of these nonlier systems
are thus important, which is however complicated due to the coupling between the
nonlinear rigid body motions and the linear elastic displacements of the body during the
motion. In general, the behaviours of such systems can be accurately reproduced by the
nonlinear dynamic equations. It is also possible to use the nonlinear dynamic model as the
core of a control algorithm but it is very expensive in computing [I. 21. Thus a lhiear
dynauc model for the nonlinear system is usually required in order to simptfy (he
computing and to adapt to the control design which has been developped for the linear
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systems and already exists as well as modal analysis. Obviously to reach this purpose. the
linearization procedure is necessary to be performed

In this paper, we propose a simple linearization method to obtain the linear dynamic
model for s flexible multibody nonlinear system Our nonlinear dynamic equations for the
system are established using the Kane's virtual work principle. Elastic bodies in the
system are discretized using the finite element approach. Their deformation modes are
directly derived from the differential equations with appropriate boundary conditions. A
finite element code can be used for this calculation (e.g.,The Nastran or Systus
software).The configuration of each elastic body is defined by using a set of absolute
coordinates and modal coordinates. The kinematic relations between the interconnected
bodies are represented by the recusive equations (3). Obviously, a direct partial derivation
of these nonlinear dynamic equations in the linearization procedure can generate a large
amount of terms, due to the strong coupling and nonlinear relationships among the
variables, which can hardly be handled in the programming, especially on performing thepartal derivations of kinematic terms with respect tote enrahlzed coordinates in order to
establish the stiffness matrix of the linearized system. The derivation process is thus
overwhelming.

However, we can in fact obtain these partial derivatives through the first and second
order time derivations of the body absolute angular velocities and through the first,
second, and third order time derivations of the mass center vectors, respectively, so that
the linearization procedure can be very much simplified. We ha~e developed the specific
operators to perform the time derivatives without distinguishing the rigid and flexible
variables. We like to describe our nonlinear elastic model in Section 2, to introduce our
linearization procedure in Section 3. to present our sequence of computation in Section 4
and to give a numerical example in Section 5. We conclude in Section 6.

2. System Dynamic Equations of Motion

The Kane's virtual work principle (4. 5] states that the sum of the virtual works of elastic
torces, of active forces and of inertia forces is equal to zero. all of which are acting on th.
ystem. Note that the non-working interconnected constraint forces between the bodies of

the system are eluminated n using this principle. The principle car be expressed as:

(YSFTdv - F rdh + 8L rdM =0. d)

V is the volume of the body k in the deformed state. 6r is the kinemaucally admissible
virtuel displacement of a point in the body, r the acceleration of the point, F the externalforce and the body force, and a and e represent the stress and strain tensors. Incorrespondence to Eqn (I), the principle can also be written as.

S wi
nt

. SW
e xt + &wne = 0 (2) "!

Among the three terms, the virtual work of the inertial force is the most dehL.ate and
complicate to develop. In the following, we give in some details the development of this
term and only a brief mention of the two other terms.
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2.1 GENERALIZED INERTIAL FORCES

We first develope the virtal work of mertal forces.

5wint= fiardlM

Figure I shows the undeformed (shadowed) and deformed states of a flexible body k. r
and a are the position vector of an arbitary point M on the deformable body and the
position vector of the mass center. X is the vectors from the mass center (Gd) to an
arbitrary point M on the deformed body and Y is the vector from the mass center (Go) to an

tarbitrary point Mo on the undeformed body. The following formulation usts an inertial
reference frame (R0) to describe the translation mouton and a body-fixed frame (Rd) for the
rotational motion.

(3(Mo)
a r

Ro

Fig. 1. Deformed (shadowed) and undeformed states of the flexible body.

The position of the point M on the deformable body can be written as-

n it the number of modes for the deformed body Dao is the vector of the vibration shape
and &a is the modal coordinates.

LW1,6



Denvaung Eqn (3) with respect to time yields

r=a+l) A X +

(4)

= ((M( -6(G).

n which co is the absolute angular velocity vector of the body k and X the time dertvative in
tIhe body reference Rd.

The acceleration of the point M can be determined by the direct denvatton of Eqn.(4),
which is
r = 2 + ) A X + () A ((0 A X) + 20) Ai +

t .~V= tU(M).-i(G)(5

The virtual deplacements of the point M is

8r = Sa + Sx = 8a + 80 A X + 6a(Oa(M) - a(G)) (6)

in wuch 60 is the vinial angular deplacement of the body k. Thus

8a = VSql+ Va8t = v(8p)T (a = 1, 2, ... np) (7)

60 = tilSql + Qc,84a = fl(p}T (I = 1, 2, ... n,) (8)

V = [V , Val, C1 = (f01 . ln], and I5p)T= (Sq, 8 01)T

nr is the number of the ngid degree of freedom (DOF). nis the number of the flexible
DOF. qt is the relative joint coordinates for the ngid body motion. The vectors v and a are
the partial velocity and the partial angular velocity of the body k which are all the
complicated implicit functions of p. Their recusive expressions are given in detail in (3)

We thus have obtained the generalized inertial forces for the body k associated with Sqe

and 64.:

FI* -VIM Ca-1 O(J6 + ) A Je) + K(0) +' tH a (9)

Fa*= -V0 M a fla(JC + 0) A J) + KO) + 46Ha}

n
•(H

0
I& - 0'Jc5L}a0) + ta " F MlPa(G)0(G)'J5}, (o0)
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in which

- =' , VP;. It,2

sV + V. (14)
and M is the mass of the body k. We call pa, IF K, In, Ha, and An arc the mechanical

tensor terms of the deformed body whose definitions can be found in Appendix.

2.2 GENERALIZED ELASTIC AND EXTERNAL FORCES

The virtual work due to the elastic forces can be written as.

8wit =. O eTdv =. aTK 84a.

Koo iS the synmmetrical positive definite suffness matrix associated with the elastic model
coordinates of the body k in the multubody system. The matrix Kao is very easy to be

obtained by the finte -element method.
The virtual work of alh the external forces acting on the body k can be also written as:

awext = JF 8rdZ=(Q]T[Sp),

where (Q}T is the vector of the generalized force in function of the generahzed coordinates

2 3 GENERAL FORM OF THE DYNAMIC EQUATION

We have developed the generalized forces. The dynamic equation for the flexible
multbody system can thus be obtained by summing up the contributions of the generalized
forces to Eqn.(I) over all the bodies. The general form of the equation is written as:

M(p) 'p + B( P.p) + g(p) + d + kp = T. (15)

in which. M(p) is the system mass matrix.

B(@ ,p) is the vector of the Coriolis and centrifugal forces,
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glp) is the vector of the gravittanona force.
dis the system damping matrx.

K s the system stiffness matrix.and T is the vector of the torques acting on the joints

It is evident that the dynamc equation for the flexible multubody systemn is nonlinear due
to the strong coupling between the nonlinear rigid body motionis'and the linear elastic
displacements of the kbody In order to modal analyze and to control design such a system.
we need to perform the linearization of Eqn.(15).

3. Linearization of the Dynamic Equation

Linearizng Eqn.() about a point (Po, Po, To) yields a linear equation as written below

M(po) p+D(po,po) p + K(po.P 5)P-- (16)

in which D (= d + aB/d$) is the damping matrx and K (= k + ali/ap + ag/p) the stiffness
matrx for the linearized system. Tihe linearization of Eqn.(15) consists therefore in i
computing the matrices M, K. and D.

It is necessary to perform the partial derivation for each term in B in Eqn (15) with
respect to 0 and p. to establish the damping and stiffness matrices for the linearized
system. Note that the generalized inerual force terms which contain p and p. as shown in
Eqn 19) and (10), consist in the major part of the B vector. We rewrite these terms below: *

b= VIM .P + 'l {(JP + o) A O + K(} (17)

b= Va m' O + OJaiiP + (t0 to 3() + (QK0 + Hc0 WP0- o0)'Wa + daOt (18)

in which aP =Vpand 6P = tp.

In order to obtain (;biapj), (abalaoj), (abtlapj ), and (abo/apj ), we need both the pj and

P, derivatives of the kinematic quantities such as a". 6P, . V, n and the p, denvatives of

the mechanical quantities such as J, K, J(, Ha, and if6 to obtain the jOj and p, derivatives of
bt and ba. However the direct partial derivations of aP, d&P. ex V, and fn with respect to p
and p are very long so that a large amount of terms is yielded which can hardly be handled
in the programing. The complication mainly results from the derivations of the kinematic
quantities. Thus, we introduce a simple method to fullfill these derivations

Let us write down the first, second, and third order time derivations for the mass center
,ectors of the body k They are all the implicit functions ofp wlile the explicit functions of

p, as written below
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34h ,( , . 2. '419)

ik = B'(PPj S+E(p)p 1  + Fp)p (1 1. 2. (20)

ik = D59 ()PP+ jp)p,p , + ,(p)p , ( .2 Q) 1)

in hicIt ,(P = ~p)= F(p) N(=ii+n,) is the total numiber of the generalized c oo rdinates
in whichse Aij =l C) = Pkp) N an~d Fj are the coefficient vectors, among which B,,(p)
and D,,") resultdfo the partial derivations of the mass center vectors with respect to

p,. pjandPk Accoring to the alternate property of the partiat differenti ion, we have:

B,1(p) = Bj,(p)
(22)

D,)Jk(pi) = Oj~j(p) = Dkj(p) = D
0

kj(p) = Djik(p) = Dks,(p).

] Similarly the frst and second time derivatives for the absolute angular vti,,cities are.

rok =;'(p i123)

6)k = 5i(P)PPJ + s(P)Pl (24) 1
(6k =6,jk(P)P,Pk + E(P)qpp, + Tx~i(25)

in which. &~(p) = ,(p) = F.(p). The ij(p) said 610k(p) vectors have the similar relations
i Eqn.(22.). Comparing Eqn.(l9). (20). (23). and (24) with Eqn.o o. (12), (13), and (114).
respectively, we obtain:

V1 =A,(p).

v, Bj,(P)p"

n'~p) and

aS, =B~Jip)p,

Our idea of simplification of the linearization procedure is to make use of these
coefficient vectors. We memonize these vectors, among which the Bi9(p) and D~jk(P)
vectors which satisfy the relations given by Eqn (22) are sumed up and put into the Bjjp)
and Dyjs(p, vectors for which i>j>k. The ji and p derivatives of the kinematic terms can be
formed by these coefficient vectors tunes the corresponding combination of the generalized

-~velocities. The following formulae are established in such a way: F
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(26)

alp ki1
I- = Bk(p)p, + 

2Btk(p)pk + BZk(p)p, (27)

a3ip aip Wki N
FP7=- I DPk )PkPk+3(7D kk(p) - -k DM(p)1pk

1-1 - k~l

I k- I N k- N N
+ i . D kj(p) + -D,kj(p) + 1 Dvk(p))ppPj

.-1 k+lj.i j-k+hwj

Note that the p derivative of aP is obtained by the p der, xve of aP, whtc,' makes the

derivation easier because 'd is the exphcit function of r, As raentioned earlter The fractions
in the third equation are ,esulted from such an indirect dt wvatuon

7 Ok(p) (29)

7_ B,(p)p, + 2Bkk(p)pk + §s(p)p, (30)
aPk 1-1 -k+1

k-i N
- B(p)p, + 2§k(p)pk + E B,,k(P)P, (31)

! apk Ixl .=k~l

i +i

-- = a sP 2 kW NA ) 
2)

= Dkkk(P)Pkpk+j(Y kDs(p))+ . D,(p)]Ppk!I ~ ~ P -- aPk It tkl+

kdk-I W N N N

+ - t6s'Vp) + I Z ,6P) + Z I D6sk(P)JPP, (33)
1j .I t I-k+t jsk+ti- t

To sum up, all the p and p derivatives of the kinematic terms can be obtained by simply
performing the time derivations for the mass center vectors and the absolte angularvelocities instead of by performng a complicated direct denvation. In order to calculate

p r tamc
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bsa
quickly the time derivation, we try to formulate the recurrent relationships among thebodies'regarding to the mass center vectors and the absolute angular velocities ,

3 1 RECU'RRENCE EXPRESSION OF THE ANGULAR VELOCITIES
AND THEIR DERIVATIONS WITH RESPECT TO TIME

In our recurrence expressions, we do not specify the generalized coordinates of the rigid
and flexible bodies by using different notations. We simply use p, i=i ." N) to
coordinate the bodies. Thus we labled the system in the way as described in Fig, 2

The connecting points in the system are also labled as the bodies. The vector 02k.1 at the
connecting points represents the rotational direction of the rigid body in the system The
vector 02k on each body represents the rotational direction of the deformed body. Thus the
absolute angular velocity of any body in the system can be expressed as:

Wk = (.k.I + P(.ln O(k.a),a (3.)

Note that a now represents the number of the rigid or flexible DOF. Derivating Eqn. (3i,
we can obtain:

Ok = 0k.I + Wk. I A (p(k.) 0(k.).) + P(k*),a 0(k1)a (35)

0)k = 5Ok5. + O). I A (P(k1),aO(k4l),a) + (0k.1 A ((0k.1 A (p(s./,o(k.i),a))

+- 2(,k./ A (p(k.j),a0(A.j),a) + P(k.I),O O(k.l),a (36)

O 03* 04

2ka

Fig 2 A rotational chain
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3 2 RECURRENCE EXPRESSION OF THE MASS CENTER VECTORS
-%ND THEIR' CdGRIVATIONS '."ITH RESPECT 10 TME

We consider the two connected bodies in system as shown in Fig 3. wi'ere the deformedstate (shadowed) and undefornied state are presented.

a3  3. 2k.2 r (37

S28.Z'k- S 21-2. + (2'2o(2k2,

X ~ o ~ '2 ~ o ( G ) ' 2 k 20 1k

r0~~~~~ ~Fg an rTh h vcosfrmacnen poitin tof ah mass center n. S n r
deomation of the body. ceteo the abopd otins h iedrvtoso .w
define~.2 the .fo+wn opratos37in~~ :Alc

S~k-2= S'1k.2+ 4(A-2)aX((38).

[.1 '2 2ka~~
_,~-2. L (A2, Rk2 b2-)aGk2



D'(pp)=mkA( )+5)kA(03&kA( 0)(9)

D3k P-P-P)=u)o A () +2OkA(Wko~ ) + ck-,kAoA) + (OkA (okA(xtok A))) (40)

The tume derivations of a using the operators are:

32k* =112k-2+D. 2k.2+-). 42-)0 D ,)t20 + .k.a k( (41)

D,'2(0P)S2.2 + 2D(2k*) 2k. 2~

a~k = a2k.2 + DZ*
2

pp)~. +m 4D
2 2

p~~ 0  2-20.)

+ (2-2).aX~(2.2).a +D2 (p~p)r2 + 2D, kpAU~20  %2k.a) + 42k~a )Xk a (42)

ai2k=aik.2 + DJ 
2
k
02 p.p. p)SRk.2 + 3D,,k*2( P-p)Q2k-2).a X(2k 2)0)

3D2k02p 32k(PP

(P(A2k2).a 4.2k.2)a) + 4(22, .A , a 2+ Dj (pp )r2k

+ 3D 2- (p .li) (2k oa k 2k ) + 3D )2( p )( 2 .2, Q + 42k.a X 2k . (43)

We have obtained dhe recutirence expreSsiors anthr,1 operators to calculate the high order
time denvations of the angular velocities and of the posiv,. s of the mass center. The
derivations of the mechanical tensor terar, .eith res,-^t t' we Feceralized coordinates are
given in Appendix. In the following, we give a brie? 3bolt our p-ogralnming

4. Sequence of Computation

4 1 DEI'INATION OF THE r'OSMON FUNCTON

The follow ing relationships allow to find the position of the corresponding coefficilrt
vector in one duiension vector away for the gi n subscripts ( n ,o ,j n )
We call these relationships the position functions:(n .iad.oriJ ndc)

a) For pp, LOC(t)fl= -1i -l)i +j(ji

b) For PPjPk. LOC2(i. j, Ic) =k-i'k(k+[) + R<-)i +j (kaij)6' 2

fC) For p~ppJ,00-13(1,j) =J0j - 2) + 21 (1:53)

LOC3-2(i, J) =i(i -2) + 2j +I PiJ)
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Relations between the positions of coefficients and the combinations ot the time
derivatives of the generalized coordinates are given in Table I.

Table I Correspondences between the positions of coetficients and the combinations of the
tune denvauves of the eneralized coordinates

a P1i Pt P2 P3 P4 .... Pt Position function
(0)) A (p) a/ a2 aj a4 al

positon l 2 3 4 ....

P,P' PlPt P2P P2P2 P3PI pip

Bei(p) B11 B21 B22 B31 .. Bi

a position 1 2 3 4 .... I LOCI

((2) P P/ P2 P3 P4 P1
C(p) C/ C2 C3 C4 .... Ct

position 1 2 3 4 ...... I

P'j p P PIPp P2P ...... PPt !
Dqk(p) Dill D211 D221 D222 ... Dill

positon l 2 3 4 ..... I LOC2

(s0) ElJp) Ell E2! E12 E22 ...... Ell
position 1 2 3 4 1 1 OC3.i and LOC3.2

Pi Pi P2 P3 P4 " ." Pi
F,(p) F/ F2 F3 F4 ...... F.

posiuon 1 2 3 4 ... I _ _

4 2 CALCULATIONS OF THE OPERATORS

In order to save the calculation time, we successively apply the recurrence expresstons to
the terms in the operators.

Alk 
= 

Wk A (Ok A e.) - AA'+Ok.
A 

(Ok.lA e)+ Ok.I A (r.IA e,)+Gk.lA (Ok. /A e,)

B - Wk A (Wk A e,) = B,.I + (ask-l A Ok.1) A (WCk. A e,) + Ut.,A (Wk- A e,)

+ Ok. I A (Uk.I A e,) + (Wk.I A L. 1) A (fik.! A c,) + UJk.lA (Ok./A e,)

C,*= Wk A (Wk A C,) =C,-'
1 

+C('./A( (0k.l A C,)+Gk.1 A ((3k.1 A N.) A e,)
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Cok A 404 A (Wk A e,,) = Dj -

+4 (. A ( (Ok., A c)+q A e,)) + ot .- A (k., A (w-k./ A e,))

-oU.1 A ((Ok., A (t. A e,)) + 41.] A (W.1 A (oyk /A e))

+ Ok.l A (Ok. A (Uk.j A e,)) + Wk.J A (15A.1 A (Oy. A e5))

+- Uy.lA (Uk.j A (O., A e,)),

in which

41 Pk.u Ok.a and Uy.l= pk.a Go.a

Based on the recurrence formulae as gtvm-n earlier, the procedure tor the numerical
ealuations of the damping and stiffness matrices for the linearized syrrem can be
$ummenzed as follows:

1) For each time step, calculating the %ectors e1, 82, .. , 0, ( See the Eq.(26)).

2) Calculating the coefficients &, B, C,, Dgk, ard j tn Eqn (23 to 25);

3) Calculating the operators Dlk( p). D2k( p. l), and D3'( p, p, ps) (Eqn. (38 to 40));

4) Calculating the coefficients A, B,, C, D,, and r, in Eqn (19 to 21);

5) Calculating the partial p and p derivatives of kinematic (Eqn.(26 to 33))and mechanical
terms (Appendix);

6) Finally, establishing the damping and stiffness mactmces.

Figue 4 shows the flow chart of computational algorithm for the linearization procedure

5. Numerical Example

In order to demonstrate thr performance of the numerical ineanzation metiod proposed in
this paper, the program has been applied to a two ngid manipulator model, as shown in
Fig 5. The numerical data of this mechanism, which are input data. are given in Table I]
Table IIl compares the analytical results through a direct partial denvaton with those

K. 173 - -
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Model synthesis
Finite element analysis of flexible bodies

Flexible body data

IP .dat Rigid body data

-yes Take 01, 2 ....&O

to of okati and 6)hitcl em

Peigr th Coartiaona algondimn
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obtained by our numerical l-arization procedure. They are in good agreement. The
differences are possibly due to the inaccuracy of the hand calculation

(2)

qi

Fig.5 Two rigid planner manipulator model,

Table 1] Numerical data for the two links in the model

Link (1) and Link2)

Link length (m) I
Link mass (kg) 60
Area moment of inertia Lxx 5037
(M

4
) lyy 0.0733

Izz 5.037

Table MI Comparison of the analytical results with the numerical ones

Analytical insults Numerical results

Faugmti 6630 10781 F6632 10 791Darning matrx I
L 7708 0.00 j L7691 000 J

Stffes ati 516.88 520.12] [513 92 516981

L200.81 526.491 L19977 523 76J

6. Conclusion

We have proposed a linearization procedure for the nonlinear dynamic equations, which
are established in our case based on the Kane's virtual work principle. The partial
derivations of the kinematic terms with respect to the generalized coordinates and to the
generalized velocities have been fulfilled through the first and second order time
derivations of the body absolute angular velocities and through the first, second, and third
order time derivations ei the mass cener vectors, respectively We have developped the
S pecific operators to perform the time den,,ations without distinguishing the rigid and
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flexible variables. Thus. this method makes both the theoretical deduction and theprogrammng relatively simple. and allows a rapid computing.
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APPENDIX

We give the derivation of th, mechanical tensor term with fepect to the generahzed
coordinates

I Definition of the mechanical tensor term

Mechanical tensot terms for the deformed body in the reference frame Re are defined as:

Jaf at[X A (e, AX)]ejdi.

I :K,J f ( X X A (C, A 9 )] edm ,

la,, = Jat.*..\ (e, A x)l-e. dm.

Hti= f AX .A ,,ldilm. in= J(i A b,0]dm, and p,- din,

in which

and X is a vetor on the deformed body, which is equal to X=X. + 4a'r'oa

2 Derivation of the vectors x. R and 0o with respect to the gener'lized coardnates

ax at ~ -ax o n p

pk .Ok AX. 5p--OkA anx a"(D4s0 k A

3 Derivation of the mechanical tensor termas with respect to the generalized coordinates

a. i [ (e, A X).ejdm + (X A (e, A -X)l'ejdm
aPk DPk apk

tin



= Omem{ J [(e,*X)(X A el) + (X ej)(X A el)jdm)

aPk aPk aPk

aJU a23 a J L
aPK aft aPk

[ 2l130k.22J 12 -J
3
3kl+23Ok2(Jl'),,)Gk3 )I2O,1-J33-JI )9k2lJ3 0k3

-J I3
0

kl+J
3

O3k2'{Jl l
3

2Ok3 *2J23ekl+2lI 2 Ok3 (Ij3DlJlo2J3k

=- kemJ A)(e, A ) ).(d + X Ae Aj.( e-(X e)( c, dm = e dm)[ Pk aPk a~k

aft aPk a'Pk =

2 ja (lk, akU
aPk aPk aft -
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k3 I+k 1 ). 2( .k., jlek3 -k310kj+kI3Ok2+IkjI'k-Rk3 k,10kl.(k33-k, )k~3
5

.

L 5-~kj3~3kt lI 522k322)a -k3k3Z (kI 421 i3k3 . 1, -k3OI-2OIkIk

kj2Ok+(k33kj )& 3 (kk39k-k~jOUkj3 (k2 3 +kj 2 )Ok.1 (k 3 +k3 )o 2

-k (.Lx[ (e, A k) edm 40a (eA k) eldin

' ~A wb2,din Xaav din - Ok A Ho

apk aPk O

ax
d.- A %O AA din + I XA 60dtn ek AhA0

Note that we did not give the derivation of je since it :s simiular to K i fm
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ABSTRACT. This paper presents a computer based method for the efficient for-
mulation and solution of the nonlinear equations of motion for mechanical systems
of interconnected flexible bodies, subject to motion and/or geometric constraints.
undergoing elastic deformation together with large rotations and translations. Flexi-
bility is modeled through the use of admissible functions obtined from previous finite
element analysis of the component bodies. The procedure then forms the equations of
motion and solves for the system state derivatives associated with the unconstrained
system in a highly efficient Order n manner The constraint loads tequired to enforce
the constraint relations are subsequently determined through the use of a constraint
stabilization method The required constraint loads are then used to modify the
state derivatives found previously, resuking in a set of state derivative values which
are now associated with the constrained system. The procedure is efficient, accounts
for motion induced stiffness, and produces equations which are highly concurrent
in form, yielding simulation code which lends itself well to application on parallel
computers

1. Introduction

Much work has been done in the development of simulatioi procedures and computer
codes for multibody dynamic systems since the pioneering work of Hooker and Mar-
gulies [1 over twenty-five years ago. During this period many simulation procedures
and associated simulation codes ha,'e been developed for treating a wide variety of
systems. When the systems are modeled as containing only rigid bodies, the result-
ing equations of motion are exact However. in many applications some or all of the
component bodies must be treated as flexible, and in these instances the story is
quite different Here, one finds many assumptions. approximations. computational
concerns, open issues, and a good deal of debate

Complicating the situation still further is the issue of compuatinal speed and
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throughput. In the past it was often the case that computational efficiency and speed

aere sacrifice, :or the sake of codes ishich could handle more general systems. or that

accuracy was r'ten sacrificed foi the sake of computational speed [21 However, for

analytical modeling and computer simulation to be ar effectise tool. it must he ac-

curate, fast. and economical The design process may tequire many simulations, and

may thus be limited by time and/or monetary constraints As a result, recent years

hase seen great emphasis placed on developing algorithms and simulation programs

which are computationally efficient/economical, while remaimng general enough to

be adequately used as analysis tools for a wide variety of rigid and flexible mutibody
systems [2-9].

Presented in this paper is one such approach, based on a highly efficient Order

n algorithm, for dealing with multibody dynamic systems. The recursive method

uses r-!ative coordinates for rigid body displacements, and shape functions obtained

from finite element modal analysis of the component bodies as admissible functions

for the representation of elastic body flexibility The formulation considers motion

induced stiffening (too often neglected), and the approach can be applied to both

tree and closed loop configurations. The resulting equations of motion are highly

parallel in form and lend themselves well to application on loosely coupled distributed

architecture parallel computers

2. Analytical Development

Consider a system of,V interconnected flexible bodies The flexib,hity of each body
is approximated through the use of a finite set of admissible shape functions and

associated modal coordinates, with the interbody joints each contributing from zero

to six rigid body degrees of freedom to the system total. If the total number flexible

body and rigid body degrees of freedom is n, and P is define to be a differential

element of an arbitrary body of the system, then the angular velocity and velocity of

P in the mertia reference frame N can be respectinely expressed as

wI =P 4u,+w 4 and vp = Zvr'n,.+vf. (1)

where, by definition [10]: ui,...,u,, are generalized speeds, quantities which charac-

terize the motion of the system, and. wP and vP are the rth partial angular %elocity

and partial velocity of P in N, respectively

If R represents the resultant of ill distance, contact, and elastic forces act:ng on

P, and R" are the inertia forces associated with P, then the equations of motion are

given by

Vr.R4Vk -v vr R*dV' =0 (r= 1,. n) (2)

Unfortuately, proceeding in this manner yields a number of difficulties The equations

of motion which are produced as per Eqs (2) are incorrectly linearized in the modal
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coordinates and there time derisatives derisatives This can lead to significant error
where motion induced stiffness is involved. In addition, the integration over the vol.
ume of each body and the indicated summations over all bodies of the system at each
time step can be computationaly expensive Furthermore. the resulting equations
of motions are highly coupled in the state derivatives, thus requiring computation-
ally expensive decomposition of the mass matrix before the state derivatives can be
solved for and the equations of motton can be temporally integrated Each of these
difficulties will be addressed subsequently.

2.1 NOTATON AND GEOMETRY

Once the identification number k for each body in the system has been properly
assigned, the topology of the system is uniquely defined by identification numbersof the proximal bodies The notation Pr[k] refers to the set containing only the
proximal body of the B

k
. Pr is called the proximal body array, and the conventiun

that Pr[k] = 0 is used if k is a base body where bodies 0 and N are synonymous
labels for the inertial reference frame It is also useful to introduce an additional set
Dist[k] to characterize the system's topology. The notation Dist[k] refers to a set of
body numbers defined as

tDist[ { I Pr[J = k} (3)

where Dist is called the distal body set array
Throughout this paper, scalar quantities will be represented as plain faced Vec-

tor quantities will be denoted by bold symbols, while matrices are shown as plain
faced with an underbar. Dyadics are represented by bold faced symbols with an
tinder tilde, while matrices composed of either vector or dyadic quantities are repre-
sented by bold faced symbols with an underbar. For example, the symbols A, A, A,
4, and A, represent a scalar, vector, matrix, dyadic, and matrix of vector or dyadic
quantities, respectively Unless tated otherwise, a variable in the subscript preceded
by a comma indicates differentiation with respect to that variable, and summations
are carried out over repeated indices, with indices 1, m,o,p = 1,2,3, q = 1, .21,
r,s,t = 1, . IB, and j = 1,. MJ'. For each of these, pA and u" are, respec-
tively, the number of flexible degrees of freedom associated with body B', and the
number of rigid body degrees of freedom associated with joint jk connecting B

k to

The joints between adjacent bodies can be thought of as being composed of a
seres of properly oriented single degree of freedom revolute or prismatic "subjoints"
connected via massless/dimensionless links. Thus, if joint Jk is a six degree of free-
dom free joint, then it can be described by the set of single degree of freedom subjoints

Ji, . .4. The value of generalized coordinate q4 
representing the relatise posi-

tion/orientation of the subjoint/body J' with respect to its proximal subjoint/body
Jl Iin the direction of unit vector yk

A typical flexible body of the system is defined as a body B
k 

which undergoes
relative rigid body motion with respect to its proximal body B

P
'
15

I and deforms
elastically, Fig 1 Let no' ' be the reference frame of Bk Nsith respect to which the
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deformation of the body is ginen. Reference frame n* ' represents the frame within
whicn the dextral mutually perpendicular unit vectors n are fixed
and which is itself fixed with respect to point PB',, the z

t 
grid point of the finite

element representation of Bk. The point for Nshich i = j, is that point of Bk which
connects B to BPIl

] 
through joint J1

The position of an arbitrary P
8

' of Bk suth respect to pkJ, is given by the
position vector

P", + "" (4)

where p" and k.,, are the position vector of P',' in undeformed Bk, and the admis-
sible shape function matrix associated with the translation of P1.1, respectively The
body Bk has ' modal deformation coordinates associated with it. where q,5 is the

I coordinate. In a like manner, the angular position of a node at P4" with respect
*to PJ*, 80, arising from the deformation of Bk, is expressed in terms of modal

coordinates, q,", and rotational deformation shape functions. If t,-' is defined to be
the rotational shape function associated with q, at pk,, with respect to PJ then
8 '-' is given by

Ok" ;, k., B'= kB q (5)

Finally, unless otherwise specifitd, all time differentiations are taken in the inertia
frame.

2.2 MODAL REPRESENTATION AND CEOMETRIC STIFFENING

To reduce the large number of elastic coordinates, a standard component mode tech-
nique is utilized [11]. This approach involves using a relatively small number of shape
functions for each elastic body. The shape functions used consist of selected vibra-
tion modes, all constreint modes, and any necessary static correction modes The
important issue of how these modes are best selected is a area much on going work
in the multibody dynamics community and will not be addressed here.

Linear strain energy theory assumes that the deformation components are inde-
pendent But in systems involving high rotation rates, high radial forces can occur
and the coupling between radial and transverse deflections becomes significant. Un-
fortunately, the use of modal coordinates in modeling flexibility results in equations
of motion which are incorrectly linearized with respect to these coordinates and there
time derivatives For this reason higher order strain energy terms need to be consid-
ered. These terms are used in the generation of geometric stiffness expressions which
are added to the existing equations to correct for the premature linearization in the
modal terms Methods such as those discussed in references [12] and [13] produce ge-
ometric stiffness terms which require iterative updates, and thus are computationally
expensive By comparison, reference [14] pre'sents a technique which applies to gen-
eral flexible structures and requires the deteimnation of a set of geometric stiffness
matrices only once
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This latter technique is the one which is used in this paper, modified to make this

method compatible %ith the O(n) formulation As given in Ref. [14]. the element
geometric stiffness is

a oL' tl [ o a 5o a .o~]F
x"" Lvz dl' (6) ~ j[a]

where (z,iy,z) is the (3 x e.ndo) matrix of interpolation functions, with x, y,
as local coordinates. The stresses a,)o (z,j 

=
z, y, .) are those arising from the loads

applied to the nodes of the element, the quantity e-ndof represents the number of
element degrees-of-freedom, and U is a (3 x 3) identity matrix

.o;k.

Fig 1. Notation for describing flexible body

Finite element codes, such as NASTRAN can compute the geometric stiffness as-
sociated with a piescribed distributed load by first calculating the associated element
stresses, these element stresses then being used in the determnation of the element
geometric stiffness matrices as per Eq(G) Finally, the element geometric stiffness
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matrices are assembled into the body geometric stiffness matrix 117,B'

The overall geometric suffness matrix for Bk. ll, is constructed from twenty-

one time invariant contributing ratrices. K1_ (q = 1,.. 21). and their associated

tempGoral scalars. , which arise from the inertia loads in B In addition, there are

another six contribut.ng time invariant matrices. (E 6 Dzst[k], h = ,. 6),

and their associated temporal scalars. F
s'
, which are affiliated with each distal body

to BI and account for the geometric stiffening in B3' due to loads applied to it by each
of these distal bodies through the corresponding interbody joint. J) Specifically,

., G,
j6V,,tIkJ (7)

(q = 1, 21; ) E Ostk]; h= 1, 6)

23 UNCONSTR\INED SYSTEMS

Key to the reduction in the number of required operations is the removal of sum-
mations which appear in Eq (2) and the associated geometric stiffness corrective
terms. The indicated summation can be eliminated entirely through the recursive
shifting of active and inertia forces to their proximal bodies The state derivatives
can then be determined inexpensively through the recursive triangularizaton and
back-substitution of the resulting equations j6-8]. The arguments of the integrals
may be split into spatial and temporal parts, with the indicated spatial integrations
needing to be carried out only once. The temporal quantities are then multiplied by
time invariant coefficients resulting from the spatial integration.

Determination of Generalized Forces and Triangularization of Equa-
tions. Differentiating Eqs (1) with respect to time yields

{ = "a--p = ,'nU+ (tr'+,4,) =dip+&P (S

and

a( =-7- V ur + V, -r+VP) = (9)

for the angular acceleration of P in N, and the acceleration of P in N, tespectively
The quantities &'p , isntain all terms explicit in the unknown state derivatives,
U1, ,u, while &P and &" contains all else.

Now consider P not as an infinitesimal particle, but as a discrete quantity, either
a grid point PB',, of a finite element discretization of the body, or a subjoint JP

k

Then the mass and central inertia dyadics associated with P, MP and lP. are defined
as

M
p 

AI
p

n
P

nt and I" AI/ nt n (10)
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where JIP is the mass lumped at P +p hn~dfn
If PP is written as pp= P~np pp~ ~np hnw eieted dcP-

as P t S.tedai ~
p P ppp pp ppp ppp pppp ppp (1PL.X - 3n 2 - 2is1n3 + 3 l2t - 1 2 3  p2 3n1  1-inn (1

Having the quanties aP P ap. 81'. MP 1. and p!2t so defined. introduce

0 X , andS for notational ease as

~ [~] ~ ~~] and p~[k,,*~ (12)

ZBSA[x bh\"i~ and 0j' (1 13)

IMB'. , T'. and

j-* wJ I, + 1j (14)

&B and " 1)

~ C~x] and sJ 7[ 7'X]()

The terms T1' and R1' 
appearing in Eq (14) are the torque and force which line of

action passes through P, and which together are equivalent to the set of all distance,
contact and elastic forces (except those arising from geometric stiffness) acting on P
In addition, from the corrective term matrix, izg, of forces/torques which arise due
to geometric stiffness and given by

-ZB = -G'B K.B'pqBa', (17)

through matrix manipulation, one can construct

1(18



w here the vector quantities T" and RB' are the twrque/force pair which acts
on grid i of Bk due to geometric stiffness: T r arie o idi untte

5 '4

associated wth the geometr:c stiffness due co body Bk inertia loads: T' arc a

matrices of dyadic quantities associated with the geometric stiffness due to applied

constraint, and/or interbody loads acting at point h of Bk
. 

and =TJ
T 

.RJ1 IT

Starting from the terminal bowtes and working ineard, the composite inertia val-
ues as well as the active force and inertia remainder term portions of the inertia forces
are determined for the triangularized equations by recursively using the relationships

Ello,.. ,= jD,.,tIk (19)
{ ; j ,,,I

z~a, ,8".if i -jD.tkl

=" " iz~g'
'  

if - jDt{,l (20)

Where TB"
J' and 9"

J' 
are defined as

_3

+ (s !',) 9 , , , (21)

+ qt '"' " ° +°"# - '

and

+
5  + [ XB* .Ekl F

5 
")d

+ z t k +(§ E'i 0~'
j ED,.lk)

(22)

with

", + z (.u.,,) 1( j0

(23)



and 
4

where

, -,, )

T

(25)

and

IT' _.L (LB B') T B*
_ ,_ ] g A n ) l f B*. 1fB, (26)

with

[ T ( ")',-. ]q, (27)

+,Otk \ , 
*~

For the rigid body degrees of fieedom the expressions for :I
J
' and e, are

16' , +s, ;(sj)

T_--_- _____ _ ;d, , J p28)

- (~J;T ~ ~ ~(E" T  (29)

With , , '", and I so defined, the equations of motion can

be written in the form
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TAXIS 1. continued

Modie Frequency 30 Hz "ite 130HZ

23 839 700 060 *010

24 84.0 2061 0.75 004

25 85.6 25 1.38 004

26 85.7 232 283 -0.02

27 98.1 375 7.21 0.02

28 99.0 391 957 0.25

29 99.7 537 9.63 019

30 104.0 57 a.10 0.03

31 104.1 670 12.0 024

32 104,3 943 12.2 0,31

33 12749 1088 78.5 0.97

34 1336 43 9 2.619 0.00

35us us1g17 ecu.5 100 19.4cal re0c.29~ofdgre

can 11ead 1ub043a 52.e OnMafcsui nlss.saefc fdag

in cez usnoM prcrsysit is theodsiledt resinif rtezicanty ,d de bere of ugrng af CdmS
aweasa vft o~a strutr nosbtuat htmyalwftr oii ob

mo efcinly Frexmle f iertivd odfcain ny z220 pcii



0i a nJ7 d ( r Aa - (30) 1_'/,,,:;' r ' : and _B4°" '1 : ,

fo the case where r is associated with the generalized speed uf and ui respectively

Eqns (21)-(23). (23), (27), and (30) contain summations of quantities associated

with all grid points used in the finite element discretization of B These spatial sum-
mations (integrations I Exe only performed once, producing time invariant coefficients
to the temporal quantities

What is important ii equations of motion (30) is that the state derivatives which
are in evidence in the a terms are limited to those associated with the generalized
coordinates of the ancestral bodies, the bodies which form the path between the
inertial frame and the body under consideration (6, 8] Thus, working recursively

Inward to the lowest rigid body degree-of-freedom of the base body, we have

(, [ A' ±Ait ] + 0 where (31)

Substituting the second expression (31) into the first yields

1 (J ,S) . (32)(E-j .•2 E r-j

providing the value of u" in terms of known quantities.

Recursive Back-substitution. This known value for u
j
' is used to start the

back-substitution process for the determination of the remaining generalized speed

derivatives. The recursive relationships used here are

and
P ZJ' T

us= J. = ( -J) ' (J] - Y A jJ ' ~ (34)

u4 +,1_3 (e (34)

for rigid body degrees of freedom and

+B'4 B' T ' a' B '(

for fleible body degrees of freedom u is substituted into Eq.(33) for the determi-
nation of 

t
which is in turn used in Eq (34) for the determination of fz

J ' 
This

_ _-.... ..



process is repeated working recursieyiv outward to determine the remamin joint ac-
celerations. with the state derivatines associated with the flexible degrees of freedom
determined through the use of Eqs,!35) The end result is that the rigid body degrees

of freedom are uncoupled and the relative joint accelerations, uh (k = b o Ay and

= 1. ) are determinea in O(.) operations overall for a general tree struc-
tare

2.4 EXTENSION TO CONSTRAINED SYSTEMS

The dynamical equations presented so far apply only to tree configurations which are
not subject to either motion or configuration constraints If a system has one or more
constraints on its geometry or motion, then additional equations must be satisfied.

Consider an unconstrained multibody dynamical system possessing n degrees
of freedom. The motion of the system is fully specified by the generalized speeds,
Uhi. U,, which are independent of each otner If the system is subjected to m
conditions of the form

'I',(qt) = 0 and I, (q,q,t) =0 ( +j = 1,, . m) (36)
for holonoruc and nonholonomic constraints, respectively, then the motion of the

system in a Newtonian reference frame is characterized by n generalized speeds
uC,.. , u. which are not independent of each other, but must satisfy m simple non-
holonomic constraints. or holonomic constraints differentiated once with respect to
time. Such constraint equations are of the form

Au, + B, = 0 (s - 1-.. ,m) (37)

where At, and B, are explicit 'unctions of ql,..., q. and time t As a consequence of
the imposition of these constraints, the number of degrees of freedom of the system
reduces fron n to p = n - m.

The procedure presented here for the formulation of the equations of motion for
systems subject to constraints is a variation on that presented by Park [15,161, and
applied to an 0(n) approach in Refs [6) and [8].

It can be shown [8] that the equations of motion for the constrained system can
be written in the form

u+Lf,= subject to AIL+ R = Q (38)
Solving the first expression in (38) for 1i and substituting this into the first time
derivative of the penalty equation,

h _ AIL+ P-), (39)

yields

efc + A !"(fc - i
""

ks . ) = Art+Au+Q (40)
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where f is a positive constant chosen by the analyst. with I, and k2 being control
gains for stabilization of constraint violation error.

The solution of this ordinary differential equation in f decays to the constraint
load measure number, values When constraints are present, the procedure follows
much the same course as the basic algorithm presented in the previous section. but
now the presence of the unknown constraint force measure numbers in the equations
of motion must be considered This algorithm, like most others, requires that the
system be a tree structure. This necessitates that closed loops be cut at the joints
connecting appropriate bodies so that the required open loop structure is produced.
The constraint conditions which insure closure of the loops are then enforced through
the addition of constraint forces and moments of proper magnitude and direction.
applied at the connection points. In the basic algorithm, the set of all distance and
contact forces acting on P" are given by the reaction R

B ' 
and torque Ta ' - The

presence of the constraint forces R8 and constraint torques TcB'¢ must now also
be considered.

From these we define

(41)

where h is the point of B through which a constraint is applied.

Definig the quantities dB" CF"' and r '_' as

(42)

Y .a~( s s wr 5  W *. 3 .h f, 
5
d11

(43)
h ( - ~ -1 -______ _ c ~ 1

(44)
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ai

the state denvatives for the constrained system are given by

[1,' (S ) (_45-) i --

and

u +dBT + (46)

Expressing y as
q + (47)

where ( is that portion of u which is explicit in the constraint load measure numbers
and q is all else; q is simply equal to i for the identical system when no constraints
are i posed and is given by eqs (33)-(35). In a similar manner, the elements of C are

given by the relations

( '= (S). n (,:. d + ," - :
- .-,- Z tl'f (9

weith-
_,. ($6,,) CJ +f), ¢, (5o)

So, the equations of motion for the constraned system may be rewritten as

+ (5)
where 1 is defined by (48) and (49), and is obtained from Eq.(40). The state

derivatives are then calculated from Eq (51), with the total procedure requiring ap-proximately (n + in
3
) operations for rigid body systems. b i

3. Numerical Examples
Two example are provided to validate the formulatioi snd offer evidence of the

improved performance possible when using an O(n) f& ulation for the analysis of

syotems containing a large number of bodies.

3.1 CANTILEVER BEAM WITH PRESCRIBED BASE MOTION
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The system discussed here consists of a cantilever beam attached to a base withprescribed angular velocity - an example used as a benchmark test by a number of
authors. Refs. [14,7-19]. The generalized coordinates used in this problem are the
four modal coordinates and the angular velocity of the base is given by

a(t) = -- -t sI] if t < 15 sec

6 0 (rad/sec) if > 15 sec (52)

The beam geometry and properties which appear in this example were those used
by Ryan [18], as %ell as WVallrapp and Schwertassek 19]

Figure 2 shows the tip deflection of the beam central axis from its undeformed
position during the course of a 20 second simulation. The results agree well with
those obtained using the formulation presented in Ref. [17].

*0 1

-0 1 _

-0.2 -

i I-0.3

- 4 -

-0.s5. 
-Wt jmn tft..(~

- Wih Ceonesic Stlfting (K1<e et al)
-0.6 .... Wih Gemetc Sisffewin9 (Thi. P.per) 20

0 0 10 12 14 16 18 20A

Time Isee.
Fig. 2: Tip deflection of rotating cantilever beam

3.2 !-BODY CHAIN WITH CONSTRAINED ENDS

The system consists of a chain of rigid bodies with each end of the chain connected to
a point fixed in an inertial reference frame. The 2 bodies of the chain are connected
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to each other and to points fixed in the inertial frame bN two degree of freedom
Hooke's joints.

If n represents the number of degrees of freedom associated with the uncon-
strained system, then the system has B bodtes, a + I joints, and the actual number
of system degrees of freedom is p = n - 3. The motion of the system was simulated
for n = 4, 12. 20, 28, 36 and 44.

Results obtained from simulation codes produced using the O(n) algorithm pre-
sented in this paper were verified through direct comparison with results obtained for
identical systems using simulation codes written from equations of motion derived
using a more traditional O(n

3
) procedure.

The simulation results obtained by each of the two formulations were effectively
identical. However, as indicated in Fig. 3, the CPU times required in performing a
desired 1.0 second simulation differ markedly for eac& of these formulations when n
is large. It is readily seen from the figure that substantial saving in computer time
and associated cost are possible when using an O(n) formulation relative to more
conventional 0(n)3 

formulations.

300 --- But fit Cubic 0 02$.3
l 
+ 0 0160 +- 3 47. - 13 3 i

2000-

-- Best Fit Line.r 7,88. - 17.9

2000 ,

1500-

1000-

0 5 t0 15 20 25 30 35 40 45 50

Number of Degress of Freedom n

Fig 3: CPU time requirement as a function of ni
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44.0 Concluding Remarks

A general formulation is presented for the analysis of transient response of multi-
body sstems with fle'ible members The method uses admissible shape functions
derived from finite element modeling of the component members and thus allows the
modeling of flexibility for general bodies The formulations treats the general case
of coupled large rigid body displacements. linear elastic deformation, and ncludes a
first order representation geometric stiffening effects.

The formulation presented applies to systems involving three-dimensional mo-
tions, which may be comprised of any joint type which can be modeled as a series
of revolute and prismatic joints. The equations of motion produced in this manner
are uncoupled in the rigid body degrees of freedom, with coupling only existing be-
tween the flexible degrees of freedom associated with the individual flexible bodies.
Furthermore, the equations are generated in a form which exploits the coarse grain
concurrency of the mathematical model to the maximumn degree. Thus. the conputer
simulation code produced from this type of formulation is particularly well suited for

'I application on some forms of parallel computers.
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AN ENERGY CONSERVING CO-ROTA IONAL PROCEDURE FOR I t
NON-LINEAR DYNAMICS WITH FINITE ELEMENTS

M A CRISFIELDI & J. SH12.

1 Dept. of ,A.ronautics, Imperial College, London
2 Dept. of Aeronautics. Q'teen's University, Belfast

ABSTRACT

A new procedure is proposed for implicit dynamic analyis using the finite element
method The main aim is to give stable solutions with large time-steps in the
presence of significant rigid body mottons, in particular rotations In cont.rast to
most conventional aproaches. the time integration strategy is closely linked to the
"element technology" with the latter involving a form of co-rotational procedure
For the undamped situation, the solution procedure leads to an algonthm that
exactly conserves ene rgy when constant external forces are applied (i.e. with
gravity loading).

I. Introduction
Stewart [1) has highlighted the potential dangers of false solution from" |

time-integration procedures with non-linear dynamics. For the finite element
method, conventonal procedures can be divided into two main types' explict and
implicit, The former is traditionally used for wave-propagation and high-velocity
impact problems while the latter is more approprate for structural applications
dominated by the low frequency response although Dowi,- :t al (21 have recently
dcribed an energy conserving expli;'t algorithm that gives excellent results for
the latter problems. The present paper is devoted to implicit methods,

Conventional techniques adopt very similar predictor/corrector procedures to
those used for non-linear statcs Howevtr. the out-of-balance force vector is now
augmented by the mass-imes-acceleratoo terms vhile the conventional static
tangent stiffness matrix is augmented by a factor times the mass main,, if. as
here. no damping is considered. Dynamic equilibrium is usually enforced at theend of the step.

Vartous time-integration strategies can be used for up-dating the velocities
ano accelerations with te Newmark methods [3-5) often being used In the
present paper, the average acceleration method (or trapezoidal rule with 5 = 1/4
and y = 1/2) will be used to represent the "conventional procedure' The latter
technique is "uncoroitionally stable" (irrespective of the time step) for L=
consequently, as will be shown in the paper, the conventional method" often
requires absurdly small time steps if the solution is not to "lock" onto a higher
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energy vate (see later) Attempts to overcome these difficulties have been made
by both Haug ct al (71 and Hughes et al [81 who used Lagrangian multipliers to
enforce an energy constraint

In a standard algorithm, the time-integration procedure is totally divorced
from the "element tcchnology" (with the exception of the proviton of the mass
matrix) Most implicit dynamic procedures sausfy the dynamic equilibrium at the
end of the step. More recently, Simo and co-workers have explored the idea of a
mid-point equilibrium" (9,101 which follows on from th- work of Hilber et al
[11 and Zienkiewicz et al [121 These concepts vil oe taken further in the
present paper.

A key feature relates to the precise definition of the stresses and strains that
are associated with the "mid-point" configuration. The present method relies
heavily on co-rotational concepts (6,13). The latter have usually been used for
statics with the key aim being to divorce the straining from the rigid body
motions, in particular the rigid-body rotation. The authors have extended the ideas
to dynamics (14,15) end, to this end, have used both a mid-point configuration
and 'averaged strains" Similar ideas (although without the co-rotational
framework) have recently been described by Simo and Tarnow (16,17) in order to
develop algorithms that conserve energy when constant external forces are applied.In the first part ot

e 
the paper. the theory is developed for simple

two-dimensional truss elements and this is followed by a set of examples
involving such elements. In the final part of the paper, the theory is described
for the extension to two-dimensional beams and, in addition, ideas are outlined for
the extension to three-dimensional beams and shells.

2. Motivation

The work was triggered by the

dynamics to the simple pendulum
3,4....m shown in Fig. I (with EA atos frtatms t pl

a * SS0m t oe 10
10

N). This problem has seen
discussed in detail by Bathe in
his book [4) and study guide

[1) nboth canes, thependulum was dropped from the
horizontal position, while in

the present analysis, it is
"fired" with an initial
horizontal velocity of 772.5

Fig. I Bathe's pendulum c/msec. from the vertical
position The basic behaviour
Is very similar.

From the response in Fig. 2,
one can see that although the period is of the order of 4 0 seconds "conventional
procedures" (as previously defined) require a time step of the order of 0025
seconds to give a satisfactor solution.Figure 2 shows mat if a time step of 0 1 seconds is adopted, the solution

"looks' at a position close to the initial position after one and a quarter penods
Fig 3 shows that. prior to this 'locking'. there has been a build-up of ener,,
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with an increasing percentage going into strain energy associated with an
oscillating axial strain (Fig. 4) This phenomenon was earlier noted by Bathe [118
The term 'locking is used because, although the bar still moves, the overall
(lower mode) motions are now fairly small while the lo.al axial stretching (higher
mode) dominates

It would be possible to overcome these difficulties for this iimple pendulum
by switching variables to use the rotation and stretch.. However. the procedure
could not then be easily extended to other configurations within a conventional
finite element framework. Before detailing :he theory for the new method, we
note that. for this problem. it leads to a very satisfactory solution with a time step
s.f 0.1 (Fig. 2 and 3) and that even with a time step of 05. no locking is
encountered (Figs 2 and 3)

4.000

~~3.000 D

0 o ..0 2.00o

0.0-

-t.000 Tim. ( a.c)

-2.000

-3.000

-4,.000

Fig. 4 Relationships between axial strain and time for Bathe's pendulum

3. Theory

Before describing the new method, a brief description is given of the
"conventional" trapezoidal rule (or average acceleration method) The
displacements. d, are chosen as the "driving variables" so that the velocity at the
end of the step. vn l, can be obtained via.

V -,( ) i !

while the acceleration is then obtained from

a (2).a,,.l = t vn~l - n) - a., t AV - a n  -
200I
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Without damping, the equlhbrium equations at the end of the step are given by

gnl = ql,n I Man. 1 - qe.n+l = 0 (3)

where q, are the (static) internalforces, M is the mass matrix and q,
are the external forces Fqua:ons
(3) may be solved using the

& 112 Newton-Raphson method in which the
ie Isos n't ineansation of (3) is used to ootaln

the effective tangent stiffness

~ - matrixIn the following, we wsll
rld-olfnt concentrate on the equations for a'onfigurat simple two noded truss element as

2 shown in Fig. 5 The external forces
and the masses will be assumed fixed

5Iim* t , ' and related to the element thereby
allowing us to concentrate on the
latter In these circumstances, with

Fig. 5 Two-noded truss element the co-rotational approach (6),
equations (3) become

in-l n~l Ien+lj I 'I _m2 v2 - ma. - % . 0 .(4)nI I a, I L2J
where N n+Is the axial force (tensile positive) in the bar at the end of the step

and enI is the unit vector lying along the bar (Fig 5).
In Ref. (9), Simo and co-workers have proposed proposed a "mid-point

procedure" in which, for the up-dating, equation (1) is retained but equation (2).
which can be re-expressed as-

aav Av(5)

is replaced by

in Y~ (6)

with the end-point equilibrium of (3) being replaced by the mid-point equilibrium
of:4

gm 
= q m * Mani - qe.m 0 (7)

With the previous assumptions. for the bar element of Fig 5. this leads, in place
of (4) to
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IfmAv" l)l
gm: 'm ernj . . " !.mev,

I - = os

The key factor involves the definition of N, via its associated strain. In Ref (9),
Simo and co-workers obtained the mid-point strain directly from the mid-point
configuration. However, as illustrated in Fig. 6. for the previous pendulum
problem, this leads to high artificial straining.

time. Stop fl-1

nine Iso ii onflhiiiiitioi

ortlitclal stroinins

Fig 6 Artificial straining with conventional mid-point procedure

In order to remove the artificial straining, in [14.151, the authors simply redefined
N. as a factor 0 (which will be defined later) times the average of the axial
forces at the beginning and ends of the step. ic.:

N, = (No + Nn 1)/2 = PNav .(9)

Stmo and Tarnow 116.171 have ad)pted a similar approach (although without the
factor 0 for reasons that will be discussed later).

To complete the definition of the the terms in (8), the force in the bar at
the current configuration is obtained via:

N + ~EA (0n+l" Ninit + n+l - (o0

with (o as the initial length of the bar The current length is simply obtained
using:

nl X21,n+l X21,n.-I (X21 d21)I(Xl + d2) (II)

where, for example d2t = d2 - di and X1 and X2 are the initial position vectors
of nodes I and 2 In addition, the mid-point unit vectic. c, in (8) is obtained
as

ICm ( + 7Ad, )(mt (12)
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where the true mid-point length, 'men (between points A and B in Fig 5) is given

by

( me Ixln - ld 1II (13)

(The procedure breaks down if the incremental rotation is 180o when mebecomes

zero if there is no stretching. Such enormous increments are unlikely to be used).
The factor P in (9) is provided to ensure energy conservation,

Using (1) the change in kinetic energy at a node can be obtained as:

4K T T T I V
t 2=.m(vn~l vn+I -vn vn) =mvav Av = YteAviAd .(14)

while with the previous assumpions. the change in external potential energy at a

I node im
LAp=- %T~d (15)

For an element, the change in strain energy in given by.

*=n~ - Nn ) f~a4 (16)

where:

EA A a~

while

-~ n x 4d 4d t ad, 1 (18)
ni n x 2 a21 ~ ~ i~

with 1., hiving been previously defined in (13) From 016)-(18). we obtain

Acp = OaemtAd, I (19)

with-

(20)
On nilP

Hence, with the mid-point axial force being given by (9) with 3from (20), the
total energy change, can be expressed as
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1$= -(o = gT 
,  

(21)

with g from (8). At equilibrium g is zero and hence, at equilibrtum, energy is
exactly preserved. It is worth noting that the factor 0 tends to unity as the
step-size tends to zero and is also unity when there is no rotation

Equations (7)-(9) can be lineansed to give-

5.= 8i'. + 8V k8 (2)

where, via 2 + 
I  o (')

K=K ~ 1  01
K~t = Kt + - 11 0 n2 ! "2

and,

= l -SNm [ M Nm =Ktd (24)

Full detatil are given in [14). It should be noted that K, is t'on-symmetic
although an artificial symmetnsation can be applied if the time steps are not too
large (14).

31 AN ALTERNATIVE FORMULATION

Following on from the work in (16), Simo and Tarnow [17) have very recently
proposed an energy preserving procedure for shells. We will now attempt to
establish hm.s with the present formulation.

If a total Lagrangtan formulation is adopted, equation (4) becomes (6)

gn+l = Nn+lbI + rn2v~ ] - [m2a2j %2

where !

= n+l F-n+l (26)bn+ I 7 -., en+ / 26t

and in place of (10).

, N E_ l 2 .12) (27)Nn+l = NIIt + . IIn 2 2

Applying the approach of Simo and Tarnow [17). in place of (8). the mid-point
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equlhbnum would then take the form'

gr . Na bnb" 1 v - (2

where Nay zi simply tlz; mean of the N's at configurations n and n+l (as before

but wtth (27) now defining the N's). Following the lines adopted prevtously, it is
easy to show that this approach leads to an energy conserving algorithm. It can
also be shown that, provtded the stratns (but not the deformaions or rotattons) are
small. we can adopt equation (28) for the present co-rotational formulation wtth
the N's being given by (10) and that this leads to a procedure that its very close
to that given previot.sly. By comparing (28) with (8) and (9), it is cleai that we
merely reed to cstaltsh that:

~~e Ce~lj InJ+j
where we are now using the co-rotaional form for the b vector (see (4) and 161).
With small strains, it is easy to establish that this relatiunship does tndeed hold
because

S anl n t) I dn
+1I nnn n+lA

t :m =n (30)

7= 2 lis + !2l) F,,-emi 5Oem (0

4. Numerical Examples

The following examples have bee' computed using the original formulation [14,151
rather than the previous "alternative formulation". For the first set of examples
which involve small strains, we would expect almost identical solutions via the
"aliemattve formulation"

The numerical results for Bath's pendulum have already been described In

the first set of following examples, Young's modulus times the area had been

chosen to be 10
10N so that the hart or chai-lnks are nearly ,'igid. In all cases.

fixed time increments have been employed The terminology "Newmark" refers to
the Newmark scheme with fi - 0.25 and y = 0.5.

.41 FOUR-CHAIN SYSTEM

Fig 7 shows the computed response for a four-bar chain of the same EA
value as the previous pendulum and of total length 400 which is free to fly (ir.

the absence of gravity) The chain was given an initial linearly varying downward
velocity which was zero at the right-hand end and was equivalent to a rotation
about the right-hand end of I rad/sec The densay was taken as I Kg/m

205 t ".

L , +, ,(.o'



Nsw,~rk dt-0.1

Presen dt-01

j Fig. 7 Deformed configurations for free-flying four-bar chain
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The response for the present method sivolves the cnain remaining straight as
it should In contrast the Newmark method (with 1/4., y = 1/2) starts by
giving a sensible solution but suddenly jumps to a false (nergy configuration (Fig.
8) associated with axial oscillation of the bar and no overall rotation (Fig 7)!
The 5olutions in Fig. 7 are related to a fixed time increment of 0,1 sees. They
are compared with the exact solution for the horizontal sip-displacement at the
left-hand end in Fig. 9 The exact' olution is computed by assuming that the
bars are ngid It can be seen that the present rnethsd leads to an effectivelySexact 0oution with At = 0 1 while even with at =. 20, although there is some
period elongation. no "locking" occurs. The present method not only conserves
energy (Fig. 8) but also angular momentum [141,

- SxOa t Newmcrk dt0. I

./.00 +.. /*

4.350 A
ii

I

<

,'00

i 25. + .5, '
+ +

S150 S* I
I

.050 I ISI S a
/ a \ /

0.0 'a 5'
0.0 2.00 4.00 6.00 8.00 50.0 12.0 t4.0 1.0 18.0 20.0

Time iWei. I

Fig. 9 Relationships between tip-displacement and time for free-flying a

four-bar chain

4,2 SIMPLE MODEL WITH TWO DEGREES-OF-FREEDOM '

The first author and co-worker have described (19,20) an energy framework for
the simple model problem shown in Fig 10 The bar OAis modelled with one
of the truss elements discussed previously while in the x-direction a linear spring A

of stiffness K is provided (AB being forced to reman horizontal) The point
a mass. m. was set to unity , the initial length, C., to 100 and Young's modulus

times the area of the bar OA was set to 500 so that the stiffness of the bar was
5 0 which is five times larger than the stiffness provided for the linear spring, BA,
for which K = I No gravty effects were considered
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The energy framework can be used to show that if the vrtial
non-dilcentsyoal kinetic energy. 0) 2T/(K ), s greater than the a c rtcal value

or, = 0.833 the system , wthi a cesap time perid. "escape" from a
rsponse assocamted wth a low ampltude so as to respond with a 'large
amplitude". However, if Ti < "[_¢ such "escaping motion" should be impossible

For the present study. 
" 
has been set to 08 with the ne a c mFig. hv being

135o.Figure I I shows the computed relationships between the the vertical

d, a .ment (y direction - Fig. 0) and time. As anticipated, with the present
Te the motion does not "escape" (Figs. 11 ad 12a). In ontrst with theelewmark ethod", escape occurs after about 30 seconds (Figs. II and 12b). The
latter false response. is very amdded to the true response which migt have been

wobtai iniia tlin al kietilc energy, 'i > (see 19,20n).

T nIntal b t tocists K

tA

co y Fig. 0 Simple model wth two degrees-offreedom

I 5. Extensions to Other Types of Element

The extension of the previous formulation to cover three.-dimensional truss
elements is trivial Indeed the basic equations remain unaltered. In the following,
we w, iitially outline a possible extension to cover two.-dimensional beams

The equivalent static formulation is detailed by the author in (6) and is
closely related to the work of Oran (21). It is based on a Kirchhoff beam

formulation without shear deformation although an equivalent formulation bised on
Timoshenko theory can easily be derived (6] In relation to Fig. 5. we agaut havetwo nodes but ntow with a rotational variable. 8 added to the two translati onal
variables, d at each node Collectively the structural "displacements" are then
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p = (d T , 01. d, 0,) (31)

For the bending deformations, we require two local rotations,

0(1 = e-0 2 . 02 - a .02)

where a is the rigid body rotation which at configuration n+1 can be computed
from'

%ict n-'l2 o
x 
x21'n l

where the lengths 1o (inmal) and fn-l (current) follow the same equations as used
for the trus element (see (11)) It should be noted that the curved lengthcomponent is neglected in this baste formulation It is perfectly possible to addadditional terms to allow for these effects [6) vta rotating "shallow arch terms"

The local bending moments, M, and Ml2 are computed from the local O's
via:

M 1 4 (34)

For the following dynamtc formulation, we require a good approximation to
(33) that is valid for the change of ngid body rotation between configurations n
and n-l Such an approximatton follows from Figure 13 and is given by:

60L fx • 7T" in" fr'lI Ad,21 .035)

,ad'

n~i

* Fig 13 Computation of the ngid-body rotation

The ixial energy for the beam element follows identically that given previously for

210

L . z -



the truss and hence %ce will concentrate on the hending energy For the latter, the
static internal force vector is given by (6)

=in~ 8nI MJ (36)

where the "B matrix is giveti by

n+1 171 1 ,+1 T,, f

nl I

If we now adopt the average B matixe approach of Sitno and Tarnow, we arrve
at the following mid-point dynamic equilibrium equations

gnNay I [bn~bn,,1 ~ [an + Bnl IM:v21
.M IVi q~a 0 .(38)

where we have also adopted the average B approach for the axial part (see earlier
section 3 1) so that the b veciors would be at given in (29) The t teems in
(38) involve the "lumped" rotational mass while the termt ";avij is simply the

average of the \M values from configurations n and n'.l (following N, - see
(16)).

The time integration of the rotational variables follows the same form as that
adopted for the tranvlntions. i.e..

On+I Me e O (39)

OmS~i~(40)

To Lonsider the energy Lonservation, we firstly supplement the axial strain
energy of (19) with the bending strain energy

= Nb av.I0" ma 'vlai
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= .161v I - A + Mlav.2A
02 - Act) (41)

where the rigid rotation Aot is given by (35). In addition, for any node, we have
a contnbution to the kinetic energy of.'

ATb - 2rn(6 n + 
6 n+060 = (42)6A

where we have used (39) Combining (41), (42) and (35) with (14). (15) and (19)
leads to the relationship-

Ao = Asp .,- AT + AP - gmTAp ,(43)

where is the residual term given by (38) and Ap contains the incremental
nodal "displacements". As with the truss formulation the change of energy in (43)
will theefore be zero once we have iterated to the state where the residual in[ t (38) 1,, zero

In relation to static analysis. the author has extended the two-dimensional
co-rotational formulation to three-dimensional beams 122) and, in future work, it is
intended to arply a similar approach to the dynamic case. The extension to
dynamics wtll also be applied to a simple co-rotational triangular shell element
1131. 1f the formulation is restricted to small strains (although with large
deformations a'nd rotations), the silest approach vould be to adopt the method
based on the averaged B matrx. For the shell element of (13), which has only
one rotational variable per each mid-side, the resulting formulation should be vety
simple.

6. Conclusions

An energy conserving time-integration procedure has been devised that is based on
the co-rotautional approach and involves a mid-point configuration in conjunction
with averaged strains Examples have been presented showing the application of
the technique to simple two-dimensional truss elements. It has been shown that
conventional techniques" lead to solution that may suddenly jump to higher

energy states that are associated with high frequency axial osculations
Alternatively, they may exhibit false "escaping motion" that should be associated
with a struiure subject to a higher initial kinetic energy In contrast, the current
solutions remain stable with large time-steps

A disadvantage of the method is that it involves a non-symmetrc effective
tangent stiffness matrx However, this disadvantage should be more than
compensated by the stability of the method. In addition, it is possible to
artificially symmemse the matrix although convergence difficulties sometimes result

Aithough the method has so far only been applied to simple elements, the
paper has indicated possible techniques for extending the procedure to other
elements such as three-dimensional beams and shells that can be formulated using
the co-rotational method
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MODIFICATION OF FLEXIBLE BODY DYNAMICS USING SUBSTRUCTURES

STANLEY G. HIUTTON and MALCOLM J1. SMITH
Depar-nt of Mechanical En8IWeing
Ulniversiy of Britdsh Colembla
Vancouver, B.C. Canada V6r )Z4

ABSTPA~r. lm calcul n mdification of the undamped frequency char-serthocs of fitute
ekm moelsis onsderd i th cotex ofwmpmm odesyhens procesdarm. The

model. Developmems are psentedthtalwspiial eicmolsobeulzdinf
msiia~nof global frequency chwsracsLcs The applicstion ofsmsitivity, forward modfcto

snd inverse modificaton appoacbes ame ezant'osd.

1 . Intradunalsa

Analysts of tihe dysamics of fleibin mechamical systms is gerally aebieved by the use of the fite
elaem metbod. Such an approach ofte leads to the deveIosara of a mathematical model withr a
large caber of degree freeom In many cames the dynamics of intes onrly iove the lower
modes of vibration ad in such cases the application C of nta mode syndrea pnnreples to the
model may be advantageous. In dhis approach, die overal mouel is vwead as a serte of estupoemos
wsth vancus methods having beow psopoacti for idealinng die behaviour of each comnm~e The
overall aim of die peocedure ',, to deem cowmfzned that serve as basis vectors for diw

dslceeaof each copo and a stesi ptoceduse that can be used to ceouple the
cspare a quan mto a jglobal repesenar of the symtm bring modeld The heried of dais

peocetee is that die resultrg equatinns coutain far fewer variables tha die oigmal modeL but by

fttequec charactearsomc of die wijinsi system. Further. should deign modifications be required.

can beefm.in she re-analysis proess. Suhpsocedmtusea w i possibilityofmr p

alusnatives1 tob _wedi Ve ___intessftde fanoom eil.inti



componeene mode synthesis procedures can be utilized in the analysis and modificasiw of finite
element models.

2. Component Mode Synthesis

Th prbemt be considered is the etninanoof ate free vibrationchrteiisofaytm
that can he represented by aglobal equation of motion of the form

Af gt) +Ku(t) -ftt)

whr n mra ymercms n tfns maries.u svetor tm dndaent

flw freelosophylof cyalsofpmente omltd ycmo mode synthesis is tocntutailentv lbletsn oat is

2' re =iro equatio ns oinfomat ieds yst onmodaae sythe in tsms enero
formdcodnaeot~eytet~ may be writtenpoas:

k~a 4- FAc &4=0lame (amlgthalhss(a )naue

T thetran sion froms ft physical cooduat fes copnet.t

In this pae reieemethod isue nwhich csiporusi Am presentedbylwhq-
frevibratien modes and residual flexiiltea of the neglected hsigh frequency modes. For this

mehd

T= W VAAV A-'T B (3)
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(D = block diagonal matixs each componetm of whch co tan thIrefe
modes used in that component represenation

7$1= block djosa matrix each component of which contains dt
components of the free free modes used that conuepond to the iterfiace
Ilocawn of that compolerm

V = block diagonal maomi each componet of which cotains the residual
t-ahoumi Modes used in tat componsent rpeelait

. simiar to 7T

A = matixs defirmttg imercomponetr compatiblity and equilibritm cow-
straint:

= generalzed coorhsnes of egobamoe containingin seluencethie
magnaide of the cotrtbuton of each compamoum free mode to the global
tesporde.

As an example of lt use of such CMS procedatra, consider t analyis of thestucture shown ki
Figure 1. The stuctre inuesisa condiot of a telescope focu unit that is supported above the

main minor by latticed imsta, A detailed analysis of this suicoare was undertaken by Smith (4]
iterms of five components that described thet body of the focus unit and four components

same componue modes btweetehgetfeunyrtie naycmoetwsrsetvl
30.90 and 150 Hs. Table I also copares the resulting calculared naturaltilhqenies for dt lowest
40'modes of the systemn fct each difftierr case with the results of a global flume elamems model. Also
compared are the number of degrees of fieedom that are involved in eachs representation.

Thea first point to otee is st degree of condesatsion that is obtained by that procedure, diet number of
degrees of freedom are reduced fron 3360 to either 46, 62 or 78 dependlig upon the compcnet
mode frequency cur-off used. tolsthn1emr

lit CMS results for the 30 Hz cmpont cut-off predict to an accuracy greater than 5% all g.a
modes below 33.5 Hz. for 90 Hz cut-off, all global modes below 98 Hz. and for 150 Hz cut-off dt

It
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Figure 1 ioe 14 OTeeoeFojUMadSpdugTJS
(a) GenuI Anaoemqi(b) InnerTube With SCrew Ameftly Ailached to Top and
ChcppWr MeCIMISm to BomM (C) Outer Tub* (d) Support Tube
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TABLE 1: Natural frequency results for the telescope model

Dirct F.E.M. Analysis % Ermr, Fre.intedlac. CMS Analysis

Maxrnum ConmOetr

Mode) Fuquency 30Hz 90Hz 130Hz

1 11.5 002 000 000

2 133 0.05 -0.01 001
3 13.3 0.26 0.02 0.02

4 13.4 -0.03 -002 -002

5 25.5 2.93 0.01 0.01

6 33.5 687 0.03 .004
7 340 655 -0.06 0.08

8 34.6 106 0.08 003

9 34.6 16.6 -0.01 -0.08
10 39.1 7.08 003 ('.00 j
11 42.2 2.09 0.06 0.03

12 45.3 4.8 -0.03 004

13 45.3 8.29 -0.02 0.01

14 453 995 0.14 0.03

15 456 9.33 -0.02 -002

16 506 46.1 0.03 .006

17 61.0 30.1 0.07 -0.1o1

18 61.0 42.5 0.07 '006

19 61.1 72.1 007 -001

20 71.0 54_7 0_ 008
21 73.1 43.4 038 0 05

22 83.7 67.7 0.18 001
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TABLE I. contued

Mode Frequency 30 HZ 90Hz 130Hz

23 839 700 060 *0.10

24 840 206 0.75 004

25 856 225 1.38 0.04

26 85.7 232 283 -0.02

27 98.1 375 7.21 0.02

28 99.0 391 957 0.25

2D 99.7 537 9.63 019

30 1040 578 8.10 0.03

31 104.1 670 12.0 024

32 1042 943 122 0.31
33 10.9 1018 106 0.07

34 117,3 964 194 022

35 117.5 1000 194 0.29

36 117.7 1043 52Z3 038

37 120.1 1072 49.7 043

38 125.5 1334 44 6 0.10

39 127.4 138 78 5 0.97

40 133 6 1453 92.6 0.00

#dof 3M0 46 a2 78

as wel as mdxhvid the global smictr ito attuce tha my allow fmm rckfcns , to be

accompbsed more efficiently. For examp if the requaed madificatio only !,volves specific

components, then it is nt neceasary to recompte the charactesisucs of the wmiodafed cmow

Tbis can lead to substannal tame savings. In the Weescope foctu tmt analysis. th effect of dunsng
the suffness of the arings between the inner and outer tubes of the focus tmt was investigated.
Modficaton of this atffmes and re-analysis of the complete problem took 22% of the ime
for thebaseline CvS analysis. Thus in simaons where many such re-analyses have to be comptud
um oer to otain a system with the desired response caracteistics. the benefits of usmg a CNS
proceduoe may be sgnfican.
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3. Frequency Modification Procedures

When faced with the task of modfyng the vibration charactenstics of a system to meet specified
repnecrisersa. often it ite location of system tural frequenicies with respect to applied forcing

frequerrciea thatin of interest. Thus aconseson equirementis tatof modfi~Nmodalchaacterts
lin scirie prescribed manner. procedures available for the purpose have been reviewed by Baldwin
and Hlutton (5]. So-called 'forwardmodificaiion, ocdurtS" involve specifying a physical change t
the model and computing the resulting modal effect. Such procedures may require a number Of

j iterationsto achieve a satisfactory modificationt. lInverse msodification procedures. an rte ether hand.
specify as input dt required modal modlftsuants and the output from dt algonthi s dt required

mdfciosto dt system Such modification should be expressed in terms of parameters thatca
be physicay changed such as plate thicknesses. or bem accord moemt of area as opposed to ftr
elements of dt m and stiff.ts matrices wich thens require further interprttnon into apooat

physical variables.

in rte case of finite element analysis. it is conveuent to define modfication of the tttffless maris,

A7- ,' Ar(k,),A~acs(4

whsere dt modification of the jth design parameter results in a change in dtA edeement ststhess of

(k, ) a The matrixA~ rpreensthe nansfomton beten m ent and global coordssaes in dt
finite elemae model. A urmilar equation can, of course, be wniten for mass mamrx esodaicanon in
terms of element mass sesitvisy -minrces (mdt If thse element stiffness and mass sersuovity,
matrices are indepeniderit of thse design parameter 0., theni the modificanion in termed lnear, dwpq~n
mass density or Young's Moduus results in linear msodificationrs. Changing rs thscbstss of a plate i
a linear chang for a membrane element but a non-linear chang for plat bending element. It is
possrble to approximate rnor-linear modificaoau as linear rf dt change in dt design parameter i
sufficiently small. in the present work, all changes will be ssumed imear.

Genera diswsns of sensrnvty methods in structural dynamices have been presented by Ademan
and Haftka (6), and Brandon (7]. Ite bave sensitivity equanon were denved originally by

mic ensiviy, o th eienvaue o achange in the design parameter r is givess by

(5)
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where k=TTTZT.rT S=Tr-T T and 4TT7 4,=i. in general the rateof changeof T

with respect to r cantnot be evaluated directly, and thus NhS fotmula cannotc be Used directly for CMIS
mondels. However. ti beneficial toconsider circumstances inwich T can be considered invariant

with respect to r. Changes linearly proportional to the global mass matix M fail Into this category
when using the free interface method Under these cotditions, equation (5) can be written as

Urfrualyeuto 6)i flm tvau ntha i i in tesnsitivity of tefrequecy to loa

ar a-r arj

If Tand Kand Mate writen in terms of thei componaent cotrtiods

I 4'T-'1 T~i (8)
r F.~ 'aarj

where T

K=diagonal (KS,K2 ... KN]

and N =total number of comttponent.

Thus. equatirn (8) provides rnformation as to which compontm is meet sensitive in modifrng X,
when design parameter r is dianiged. Although nos mathematical proof of the validity of equation (7)
has been piresemed. under some circumstances tt may be a useful appoxmazios. For example. if the
omponent free vibration and residual attacbmen modes are uiependest of r, then (7) is valid. Thus
it may be asumed that for changes that do inot violate this conditions too greatly, the resulting
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sensitvities will have soee valhdiy. In gneral. the use of equanon (8) should be confined to
invesigati g wibchcompoat is a, candtdae for modificanui rather than snempamg to se the
calculated smnstivity to predict the required change in the design parnmeters.

As an example of the use of equa n(8),the sensiuviia of the 10th and I1th natral feqseisieof
ft model sbown ini 1gu are evaluated with respect to changes; m density and Yousng Modulu.
The results, which are shown in Table 2Jticale that modificatio ofbfte modes is most effecively

done by ciagi de mas of the chopping mechad s ad the Youngs Modulus of dt smie lbe.
In subsquent section, a moe exact procedure will be umtzed to deveamme t magsmide of the
modlfladoiesreqlubedin order topod-c a spedclupian fequentcy.

TABLE 2: Senltivty of Elgenvalues to Component Densities and Young's Moduluhs

Compossus -al ~o P~i

Inner Tube -.053 .111 -.053 .139
Outer Tube • 041 .024 -.039 .027 !

Sonm Aussfly .002 .003 .001 .003

Ch'o"pg Medhwamm .424 .002 .457 003

Support Tube •062 .005 -.058 .002

3.2 FORWARD MODFICATION

ha global oMiadon of moto for the CMS model i ive in eqadon (2) and whn wnUen in tems

of the a.em ed comoinsuff es K and mas mamx "9 isfor the A mode

TK" T j =ITrIM TI (9)

where the I mode ,hp defined m assembted physcal oordmaes i4 is gaven by

Consider now the effect of modify)ng the szffnes and mass charactenscs of hus model. Tba task is

to deemTum h new mode shapes -" wthut having to recalculate T and conduct a complet

t
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analysis of dhe modaL Assumne that die new modes in physical coordinates can be sufficiently well
approsimated by a lmear combination of dhe calculated baseline modes. ie.,

gi ic Y~c= = T7c- i

whereZis ainanax of diebaseline modes 4j. wA cl is a veceerofcoostms so be deterinined. Unmier
dhe consrmis imposed by (11), dhe resulon; equioncss of motion for a new system with

modificais defld by AT and AV aregiven by

*wherethe modifiedmode

-u;= TZc'=T

Onoe Thas.been a £uted equallces (12) affords a convmein and rapid approach so delermmung dhe

effct f aturrychagesAT ndA ff ri e baselinie modes.

Using dhe forward modffiala approaches aufined, It is possible to algnflcanily reduce dhe order of
complex fiem element models. Al5Igh~ in anne came dhe absolute accuracy of die analysis may
nors be known. die ability, so investigate a larger mintesbe of modiflicao alternatives may be more
impotant, A final full fte eleen re-analysis would generally be conduacted in such casm so verify
die accuracy of casdncosnots adopted.

As anlllusr fatia . teuof ea (12), cond he efetofcbaning te mted-Isoflte
rpanerepiesssilg dte coig mechadnsm Not ahsimme so steeL As this component Is

effectively igKid dii -ap is essentially a pur main cbman g-lw 2a showi +d.e results. Sla
frueunciesofdtheauim buseine modes are shown, as aref die odified frequencies calcuslatedby
eqsanon (12) and referred so as dhe linear equsivalent analysis. A subsequen: complete CMS analysis
of die steel case gives exsaly the same results as die linearequivale& ,Waysis.

Fig .r 2 shows he res ils of a ond analysis in which die modificatios again involves changincase, die inodiflcaic affecthde dynamics bothdahroughthe adffse and die mass esatce,. As maybe seen, the Imesr equnvalent re-analysis gives results dlose to dime produced by a complete CMS re-

Eabth eamples, the use of the linear eqivalenti analysis results in considerable nine savingLi______-S e-nayss
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Inverse Modsfication techniques Dowed cat linearized penubanon equations were first: developed by
Stetson (101. Subsequently. Hoff et al 1111 developed a pre-Actor-corrector algorithm using both
linear and general perturbation equmsui for unsbstuctured synsins In a remmn paper by Smith
and Hutton (121, a new forinulaton of the permirbalrn equations for invese firequency modsficatsont
is presented wich rems all non-linear coupling terms and is effective for b'rge frequency changes.
The following discuzsses the 4ppicun of this formsulaton in CMIS models.

Asueta ti eurdt oiyth yaiso oe uhta . by varying adeap~
* paramseter where the fractonal change in thsa parameter is de noted by m.

In general. the trasformsaton T will be an- wanown function of Use design change a. However, by
comp~ung all the baseline modes and utilizing equation (11). one can write

*(A +ZT7 TA7C(aCu)24r = 4(l + ZTTA' r~or)r, (13)

whsere A is a diagonal mwni of Use ba-611se cagenvalues and Use Z main hs been notmalized such
thatZTTIM TZ =I

IAK and AM- are restricted io be inea functions of ac and there an: m such desip variables.
then equaion(3)usay be wrie

7 a 17 T( I .- %I N )ZTci = (A - 4I)c (14)

Acsre IS ~ am globa[,soices repesenting the stiffness and massniivue to Use design

variable ce. Eqaanoo(14)ias us asystem of equasmwoe oder isequalto that ofthe CMS
modeL fU re ople frequency coniantm thenithere are us many sets of (14) asdtes re
frequesary conseralsas This eation haa the sam form us that for unsubetnictured models anda can
be solved inthe same manner

if m is equal to one sod there is only onse frequenicy consaan an eigevalue problem resuls with die
eigesivalues representig Use change u, and Udie eigeriveccar Ci d-lcering, throaugh Uhe uso of(1)
Uhe numssber of frequenicy consuntis. an iterative soluio may be used (121.

As an aplication of equation (14), the fractional change in the deunsty of Use choppog mechiamam of
the model wu calculated in order to reduce Use frequency ofthse IMt modes fu 39H If o 35 Hz.

lItt resilting valiue of ac was 1.37, Le-. Use density shousld be us=aszdby a factor of 2.37. Using Use

same frequency specification but allowing two design values mu. ccrreciondin io tse deisity of the
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chopping mechtanism. and 0:2. corresponding to the Youtng's Modulus of the imner tube, gave valuss
of a, = 1.07 and a2~ = -. 47. Table 3 presents a oxpanson of the baseline ftequenctes and the
frequencies resulting ftm the modifications indicated and shows that the requtred frequency shift his

It may be noted that in the case of rte in- modificado. rihe magnitude of the density chanp ts
much lager than would have been expected fiom thse sentivitty result quoted in Table 2. fltis at due
to the fact that rise sensidivity calculated at 39 Hz is last valid at 35 Hz. Itucalculaton of rihe

5sensitivity of rise chopping mechanim of 35 Hz gives -)I .0 .Thseoehas
070. nusrsemd ae

have been so modithed as to change sugrficatly the effect of diffensit design parameters upon the
system ftequencitit. This result emphasizes the limited value of the senesivty anaytta.

TABLE 3: Modification of Tenth Natural Frequeacy Using Perturbation Analys

~~ ModISeDon" Osnalt e Modulus

Fm~oMcd txeatlon

2 1327 1327 .00 13,27 00

3 1328 1327 40 13.27 00

4 13.35 1335 0.0 1335 00

5 2555S 20.79 .186 21.61 -154

6 3355 2831 .IS6 27.14 .19.1

7 3400 28.83 .15.1 28.05 -15.1

a 34.58 30.48 .11.9 2898 .1t2

9 3483 3464 0t 3460 -01

10 3909 34.93 -10.6 34.70 .112

41.2 5.30 4520 1 02
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Ineds fflei ble structure. especially those that are modeled with targe order finite element
represenranona. dt avarlatsssy of analysis procedures that ears provide rapid evalirarror of different
design modifications is desrrable Re-turasng the baseline finite element model ti not corasmicl.,

In dt present Paper. procedures have been presented which utiliz dt prnciples of comptonent moe
synthesis to provide dt designer waids dt ability to efficiently assess dhe effect of prescribed
modificatins or to conspte dt desgn changes required in order to achieve a dented frequencty
modification In dt sorucoxre. Examples have been presented for a complex tre-mesinlfixate
element model that ilustrates dt efficiency of dat methods described.
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VALIDATION OF FLEXIBLE BEAM ELEMENTS IN DYNAMICS PROGRAMS

J.P. Meijaaid
Laboratory for Engineri g Mechanics
Dileft University of Technology
Mekeliwg 2, NL-2623 CD Delft, The Netherlands

SAbstract

A spatial beam element for static and dynamic problems which involve large
displacements and rotations is described. This beam element is applied to
static linear buckling problems, the simulation of the motion of a slider-
crank mechanism with a flexible connecting rod and a planar and spatial spin-
up motion of a flexible beam. Results are compared with those from the open
literature.

1. Introduction

With the increase of the speed of operation and the required accuracy and the
tendency towards a lighter construction of machinery such as likages and
manipulators, the influence of deformation on the dynamics of mechanical sys-
teats becomes more important. The machine parts can no longer be conside'ed as
rigid and flexibilities have to be included in the numerical ar.alys.s ot -he
motion. Especially the deformations of slender elements such as beams, plates
and shells have a noticeable influence.

In the description of the behaviour of a system, one usually starts from
a physical model, which is transformed into a mathematical mrrJel, ai which
some simplifications of the physics are made. The mathematical erodel is trans-
lated into a numerical model by some discretization and solution process The
numerical model has to be implemented mn a computer program, after which simu-

lations can be made of the behaviour of the considered system. As exact
solutions for non-linear dynamical systems which are reitvant to engineering
problems are hardly known, the validation of the results which are obtained by
simulations constitutes a non-trivial task. The implemenktion can be checked
by comparing the results from different independently developed programs based
on the same numerical model. The validity of the numerical model can be
checked by comparwg results obtained from programs which are based on differ-
ent discretization or solution methods and sometimes from convergence and
stability theorems. The completeness of the mathematical model can be mvesti-
gated by studying the influence of the inclusion of some effects that were
initially left out of consideration; it is, however, difficult to identify the
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important effects in advance A final validation, an answer to the question to
what extent the results represent reality, must come from a comparison between
results from simulations and measurements on experiments.

In this paper we restrict ourselves to the modelling of uniform elastic
beams in which strains remain small, but which may undergo large translations
and rotations. As these are the simplest an, most widely used slender parts
and Kane et al. [11 claimed that some existing multibody formulations may give
incorrect results, a detailed investigation into the modelling of beams ap-
pears to be important. Firstly, a finite element for spatial beams with a
doubly symmetric solid cross-sections is described, which is expected to be
capable of producing sufficiently accurate results. For a demonstration of the
accuracy and the proper representation of the geometric stiffness, the beas
element is applied to some spatial linear buckling problems for which exact
solutions are known. The much studied dynamic problems of a planar slider-
crank mechanism with a flexible connecting rod and a planar and spatial spin-
up manoeuvre of a flexible beam are simulated and results are compared with
those from the literature. In the last example, it is shown how some aspects
of beams with a thin-walled open cross-section, such as constrained warping
and the eccentricity of the shear centre, can be approxunately included in the
analysis

2. Description of a Beam Element

In this section a spatial beam element is described. For static analysis, the
two-dimensional version of this element was developed by Visser and Besseling
(2]. An extension to three dimensions and its use in the buckling and post-
buckling analysis of framevorls was given by B-sseling (3-61. The mass
description was included by Nan der Werff and Jonker 17,8] and the author [9l
Here some refinements .P Mded.

The finite bcw eenienk is based on the elastic line concept. This meaali
essentIally that the beam is slender and the cross-section is doubly symmetric
and more or less solid. The configuration of the element is determined by the
positions and orientations of the end nodes, by which it can be coupled to
and interact with other elemers. The positions of the end nodes p and q are
given by their coordinates x

P 
and )e in a global mertial system (OXYZI and

the orientations are given by orthogonal triads of unit vectors, (ef, e5, ep)
and (e,, 4, el,), which are rigidly attached to the nodes. e.i s perpendicular
to the average cross-sectional plane of the beam in the sense of Cowper (101
and e, and e, are in the directions of the principal axes of the cross-
section. If transverse shear deformations can be neglected, e. is tangent to
the central axis (elastic line) of the beam. The orientations can be described
by several choices of parameters such as Euler angles, modified Euler angles,
Rcdngues parameters and Euler parameters. In the ultimate calculations we
shall use Euler parameters, but this choice is immaterial to the description
of the properties of the element.

The element has six degrees of freedom as a rigid body, while the nodes
have twelve degrees of freedom. Hence the deformation that is determined by
the end nodes of the element can be described by six independent generalized
strans, which are fu:,ttions of the positions and orientations of the nodes.
If the parameters which describe these positions and orientations are grouped
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together in a vector x. and the vector of deformations is denoted by the
deformation map can be written symbohcally ado

-i D ,(xk). (1)

With I x xc - xP and l0 the length of the undeformed beam, we define the suc
generalized strains as

2 - 0, e- lo(e,.el -
p 

l "

C' le
p,  is = -l.eq (2)

These generalized strains, which may be compared to what Argyris calls natural

modes Ill), are invariant under arbitrary rigid body motions or orthogonal
coordinate transformations, so they truly measure the amount of strain of thef 1 element.
e eThe dua quantities of i are the generalized stresses a. They are defined
by the property that F.bi represents the internal virtual work done by the
stresses un the element due to the virtual deformations 6i. In the case of
small deformations, the generalized strerses have a clear physical meaning. As
the deformed and undeformed geometry are nearly the same, we consider the,. undeforned situation in which the beam central axis coincides with the global
X-axis, and an equihbrim force system given by the nodp" forces F' and F0

and the nodal moments MP and Ms acts on the element. Wit i = (Fp
, MP, F4, M

0)
and the small nodal displacements and rotations dual to the forces and moments
U - i" , 

pp, ul, yh), the equilibrium conditions become

&.6i - jj,k6uok = 156uk - f.6u, (3)

from which follows

FP  
' , -i' s + ase, a's - a.4), MP'=(-o - o -J31o),

F1 = (at, O - as, -a, + a,), M? 4a210, 410, 3610). (4)

From this result we see that a is the normal force, a:l0 is the torsion
moment, and 3o, 5410, j410 and al o are the bending moments at the nodes p

Iand qlf bems are divided it sufficiently many elements such that for each
element the strains remain small, the usual static linear relations between
generalized stresses and strains remain valid ana can be stated as

c- =Sc, (5)

S - dmag(S, S, S,, S,),

S, = EAlIo, S2 =Selo,
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A
S _ IT ( 1 -2 + 45 4 + . 6AI. I

El. 4 + 0, -2 + , 12EI,

(1+0y)l3 -2 + Oy 4 + O, GAkyl
0

Here, E is the modulus of elasticity (Young's modulus), G is the shear
modulus, A is the area of the cross-section, St is the torsional stiffness, l
and 1, are the area moments of inertia of the cross-section with respect to
the two central principal axes, and k and k, are shear coefficients according
to [10). It in seen that the shear eformations can be accounted for by a
slightly modified stiffness mat:sx. This direct tying of the shear deformation
to the bending by means of the statics of the beam prevents problems of shear
locking. This modification of the element stiffness can already be found in
[12). Initial deformations anct material damping a.;:ording to the Kelvin-Voit
model can be treated by a modification of the stress-strain relation (5) us a
dfS( -ti ) + SA, where P are the initial deformations and & are the
deformation rates, and Sd has the sane structure as S.

With the element as described up to this point, all geometrically non-
linear elastostatic problems of frameworks can be solved accurately as long as
the beams are divided into sufficiently many elements. Dynamics can be treated
if inertial terms as described later on in this section are added. However, in
dynamics, more than in statics, it is important that one is able to obtain
sufficiently accurate solutions with rather large elements, because decreasing
the size of the elements increases, besides the number of degrees of freedom,
the largest eigenfrequency in the system and reduces the allowed tune step in
explicit integration methods. Therefore an inclusion of second-order effects
in the stiffness properties of the element is valuable.

For the derivation of the properties of a refined element, a local coor-
dinate system is introduced whose origin coincides with node p and whose axes
are in the directions of eP, eP, and e? A point r on the elastic line of the
beam is indicated by the material coordinate a, 0 < s < to, and its coordi-
nates in the local frame of reference are (s + u., uy, u,), where u., uy and
u, are the displacements. The orientation (e., e, e.) at a point on the elas-
tic line is described by modified Euler angles (v., 9py, p,) as

ey 0 . sicp. . 0 osin ln o -Si ' si 0n, 0 ey P

e, 0-sin, cospJ siv, 0 cos~,j 0 0 eP,

f cosIc;" cosps5n~, -sini4
-cosP S I np,+s i n~rsinpcos p. cos9,cosv,+s inqsinsinp i co5'4 enp

s mn s n +c o s 'cosP, -sin ,cos1P,+cos s min sm , cosqcow, ep,

(7)

232



IJ

If we denote a derivative with respect to s by a prime, the six deformations
of the one-dimensional continuum are (6]

(r'.r')'
/
2 - ey.r', y = e: r',

= 
(8)

ry ,- e'.e. -,e,= -e.

.~ _ -y'.e, ey.e,'.

is the extension, y, and y, are the transverse shear deformations, ,. s

the torsion, and % and r,: are the bending deformations.
As we are interested in second-order effects, only terms up to the second

order have to be retained, while higher-order terms can consistently be disre-
garded. As the extensional and transverse shear stiffness are much larger than
the flexural and torsional stiffness of a beam, y., iy and y,, and also the
axial displacement u, can be regarded as second-order effects. The equations
(7-8) can now be expanded as

e . 1t"P Y 
+  

' ' 1-V +] -6 9 iv y 
e  

9

J 0 "+ *u/
' 
+ u', 7y -5 -+V ', 7+ -; y + U.',

If we introduce the linearized strains e
1 

as

el (11)

the non-linear strains up to terms of the second order can be expressed as

- 5 + () + ( e5 / 2 s, C i-(s + c4 ls+ C)11

- i. + i - C'is - ie (12

The displacements and rotations are interpolated in the same way as in the
linear case as ( s - s/Io)

ti= (2 - S + (_{' + , )e + ( ,/(2+20)l( - 391 + 21)(e, - e),

Us, = -2 + + + ( 0i- i )(2+215.)]( - +30 )c + + )
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=(4C - 3C2)4" + (-9. + 93 )Z,' + (/(
4

)]- + 3f2)(C, -4.

The strain energy IV4 can be calculated from (3

i lof '(EA-r' + GAkyy'r + GAk,-r, + Sr + E4 + EI4],d . (14)

Substituting (10) with the interpolations (13) in the integral (14) yields, if
only terms up to the third order are retained,

W1 (A/ 5 (c) + j(~l)4~+

44+ 4() 3/t~)e ))+

4ce+ 4( 8  ~0+
(EA(31e~cil7(5)+ c~4 + 2(c,)' + 17(c1)2 + cse+ 2(c81) 1 +

[(l -ie-cc + 3ee) (15)

With the aid of the inversion of (12), the original barred strains Zcan
be substituted for the linearized strains. Then stress-strain relations are
obtained by taking partial derivatives with respect to the strains. These
non-linear relations between generalized stresses and strains could be used in
calculations, but we prefer to redefine the generalized strains in such a way
that the third-order term are removed from the expression for the strain
energy and the linear relation between generalized stresses and strains
remains valid. The reason for this transformation is that it gives a clear
separation of physical and geometrical non-linearities; the non-linearitles in
the present formulation clearly stem from the geometry. Furthermore, the
treatmsent of initial deformations remains simple and constraints such as
usextensibility can be specified in a simpler way. It can be checked that the
required modified generalized strains, which are denoted by c, are

e, c1 + (2i2 + 7j,4 + 27,' + 2i's + eir5 + 
2
ie)/(

3
010),

i2 + (-Fse + J /0

C3 73 + i2(73 + ie)/6ls),

-3 7 i2(i$ + i4)/(610),

f C6 ei + i2(i3 + i4)/(610)- (16)

* The corresponding generalized stresses 47 have now a slightly modified meaning

in the case of finite deformations
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The additional terms in 'el take into account the additional elongation of
the beam axis caused by its bending and the additional terms in ei measure the
extra torsion of the beam caused by its bending. If the flexural rigidity is
equal in all directions, the strains e3 to co need not be modified as can be
seen from (15), the additional terms take into account the effect of unsymmet-
rical bending caused by a twist of the beam. In planar problems, Fi, F, and i,

Sare zero and only ri is modified. Because the rigicuty aga:nst elongation is
much larger than the flexural and torsional rigidity, the modification of C,
is the most important one and the other modifications are only relevant to
more special cases, for instance when one has large differences in flexural
rigidities, the beam is used as a shaft for the transmission of a torque, or
one has initial deformations in precurved and pretwisted beaas.

The inertia terms are calculated in the same way as in [9). The inter-
polation for the elastic line for finite deformations is now taken to be

()=(I - g' + 91)xP + (f - 2, + 4$)(10 + ej)el. +

(3,' - gf)xe + (- + 4''(IQ + Ce)e . (17)

In many cases el is smail and can be neglected; it is only included in (17) in
order to obtain the classical mass matrix for small longitudinal vibrations.
Even if longitudinal vibrations are important, better approxinations of the
eigenfrequencies are obtained if this term is neglected. If we put ei equal to
zero, and the mass per unit of length is in, we obtain the mass matrix and
convective inertial terms by evaluating the integral

si41 it.dC. (18)

If the rotations of the nodes are parametrized by pP and pl, this results in
the mass matrix

156 I 221.A 541 -13 '08
ml o  41:ArA 131,AT -3 1AIl

M . - 1561 -22lB ' (19)
420

symM. 41oB'B

and the inertia terms which are quadratic in the velocitiesf l( 22A '(POP-I3B'P55mloM 1!(4IAtA I P -3A 'B'o q
b )

= (2D)-fro " -420 IQ( 13A 'O iP-221)'Oqjb
q )  0)i 1

SI ('3BTA '1PP+4Br6'OsO1)

where

A ae/lp, B = Oe./o&e, A' /OAldVF, 1' 013/0O' (21)
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The rotary inertia of the cross-section can be lumped onto the nodes,
half of the total rotary inertia of the beam on each node.

The equations of motion for a complete system are formed by the algorithm
of (8,91, which is based on the principle of virtual power and uses a minimal
set of differential equations.

3. Application to Elastic Stability Problems

In order to check whether the geometric stiffness is represented properly in

the described element, two spatial linear buckling problems are analysed for
which analytical solutions are known. In these examples, the influence of
transverse shear is not considered.

The first example is the lateral buckling, or tipping, of a clamped-free
beam with a narrow rectangular cross-section which is loaded by a transverse
force a. its end in the direction of the larger flexural rigidity. The
theoretical buckling load is Fth - 4013(E1S)1/2/12, where El is the smaller
flexural rigidity and I is the length of the beam. For the numerical analysis,
the beam is divided in one, two or four equal elements and the two cases us
which the second order terms in the generalized strans are retained or not
are considered. The results are given in Table I, where Ft, are the critical
loads which are obtained without the second-order terms and F4,. are the
critical loads when these terms are included in the analysis.

Table 1. Critical loads for lateral buckling by a force.

number of I h
elements Fc,/Fr5  Fcr/F1 5

I infinite 1.4951

2 1.2180 1.0690

4 1.0459 1.0153

We observe that with the mclwi ion of the second-order terms in the
bending deformations, the error in the buckling load is decreased by a factor
of about three, while the order of convergence remains two. Both approxna-
tions converge to the theoretical value.

Table 2. Critical loads for buckling by a torsion moment.

number of I~.M 5  M,/~

elements

1 infinite 1.1027

2 1.2732 1.0075

4 1.0548 1 0005

2
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The second example is the buckling of a clamped-free circular shaft by a
torsion moment at its free end If the torsion moment is semitangentlal. the
theoretical buckling load is Mh = irEII [13). Table 2 shows the results of
the calculations, where the symbols have a similar meaning as in Table 1. Weobserve that the inclusion of second-order terms raises the order of conver-

gence from two to four In this case.
With the inclusion of the second-order terms in the strains, we obtain.

apart from numerical errors, the same answers as Argyris et al. [14). This is
*also the case in the other examples of [141, which are not reported on here.

The order of convergence in the lateral buckling problem remains two.
because the buckling mode involves torsion, which is approximated by a linear-
ly varying torsion angle If a polynomial approximation of the third degree is
used, a higher order cf convergence can be obtained (15].

4. Slider-Crank Mechanism with a Flexible Connecting Rod

0.010
-4 elements
......... 2 elements

0
.
0 0 5

010 0 > 2 4 6 8

cranK angle (rad)

Figure 1. Dimensionless deflection of the centre point of the connecting rod
of a slider-crank mechanism. w - 124.8 rad/s, musk = 0.

The transient response of a slider-crank i,-chanism with a rigid crank and a
flexible connecting rod has been the sublect of a considerable number of
studies Chu and Pan (16) treated among other c*ases the example in which the
crank has a length of 0.1524 in, the connecting rod has a length of 0.3048 m
and a circular cross-section Aith a diameter of 0.00635 in and the slider block
is less The material of the connecting rod is steel with a density of p =
7834 56 kg/mn, a Young's modulus E = 2 06843.10" N/in

3
, a Poisson's ratio V

0285 and no material damping The constant rotation speed of the crank is .' =
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124.8 rad/s The motion is simulated over a rotation angle of the crank of 8
rad, starting from the initial conditions that the defornation and deformation
rate of the connecting rod are zero. The measured output quantity is the
literal deflection of the centre point of the connecting rod divided by its

length.
As a reference we modelled the connecting rod with four planar beam

elements, with all effects included (12 degrees of freedom). The results are
given as the solid line in Fig. 1. If the connecting rod is modelled by two
beam elements and the normal and shear deformation as well s the rotary
inertia are neglected (4 degrees of freedom), the results given by the dashed
line are obtained. As the system has no damping, any small change in modelling
or numerical integration method will give large differences of solutions at
large tmes. Therefore a good measure for the comparison of results seems to

t be the value of the first mnaximum of the deflection. These values are listed

in Table 3 and are compared with some results from the literature

Table 3. Comparison of the results of different calculations of the
deflections of the connecting rod of a slider-cra.'k nechanism

reference number of value oi the
elements or modes first maximum

present 4 elements 0.00976

present 2 elements 0.00973

[18] 1 mode 0.0105

(17] 3 elements 0.0094

(18] 2 e!ements 0.0102

(19] 3 elements 0.0098

[20] 2 elements 0.0097

We remark that the results of [16] seem to overestimate the first maximum
and the geometric non-linearity was not accounted for in (18], (19] and [20]
give results quite sssslar to those in Fig. 1.

As the rotation speed in this example is rather low and the influence of
the coupling of the gross motion and the deformation is small, the same
mechanism is studied in the case thit the rotation speed of the crank is 150
rad/s and the mass of the slider block is equal to half the mass of the
connecting rod, The results of simulations with two and four elements are
shown us Fig. 2. The values of the first maximun are now 0.01394 (four

* elements) and 0.01391 (two elements). Results from studies in which the
geometric non-linearity is not included [21, 22, 23] overestimate this value,
on the other hand, a study in which this effect is included (24], underesti-
mates the maximum.
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Figure 2. Dimensionless deflection of the centre point of the connecting rod
of a slider-crsank mechanism. w. - 150 rad/s, 7nu - 0.0378126 kg.

b. Spin-up Motion of a Beasm

5.1. PLANAR SYSfl2.1

The next example system consists of a beam whose base is attached to a shaft
orthogonal to the beam axis, which is givens a prescribed rotation. In particu-
lar the spin-up morion is considered, in which the beamn is accelerated from
rest to a constant angular velocity. The prescribed angle of rotation v' is
given by

S-1- _{i~ I )], 05 5 T%

Wtt >7 (22)

Firstly we take the case from (25, 261, In whicn the length of the beami
is L - 8 mn, the beam has a rectangular cross-section of 0 03675 mn by 0.001986

inand is made of alunsiuns with p = 2766 67 kg/os3, E = 6 895.15 N/m2. andP. 0.32 The final angular velocity is w . 4 rad/o, and the spin-up tune is T*
- 15 " The bean is modelled by four and two elements, as before, and the
lateral deflection of the tip of the beam is ta9.en as an observed quantity,

frwhich results are given in Fig. 3 The extreme value of the deflection is-05360 in (four elements) and -05S338 in (two elements)
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Figure 3. Lateral deflection for the spin-up motion of (25, 26).

The extreme value in 125,, 261 is -0.543 in in their most accurate model;
the genral shape and the residual vibrations for t > 15 s agree with our
results. Apparently, the results given in (271 contain large errors.

t;t

" -0.1

-0.2

-0.
-0.34

-0.5 _4 e__ _ ent

.....2 eents-0.60
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Time s)

Figure 4. Lateral deflection of the spin-up motion of 228).
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Secondly, we take the case of (28], with L = 10 m, pA f 1 2 kg/m, El =
14000 Nm', pf = 0.0006 kgn, GAle - 1 I01 N, EA - 2.8.101 N, and w* = 6 rad/s,
7" i1 s The results for this case are shown in Fig. 4. The extreme values
of the deflection are now -05739 m (four elements) and -05726 rn (two
elements); the amplitude of the vibrations for t > 15 s is 0.0037 rn. If we
compare these results with those from the literature, we observe that the
extreme deflection is about 1% lower in (28], about 1% higher in [29] and
about 29 higher in (30]. The amplitude of the residual vibrations in [29, 30]
is higher.

In general we may conclude that several calculations give comparable
results for this problem. With the beam element presented in this paper we
were able to obtain an error of less than 1% with a model with two elements
having four degrees of freedom, while others needed more elaborate models to
obtain the :=ne accuracy.

5.2. SPATIAL SYSM

In (1], the spin-up motion was considered for the case in which part of the
beam had an open channel cross-section. The beam element we have described
here is not intended to solve problems involving beams with an open thin-
wailed cross-section. The torsional stiffness is very low, which causes that
effects which may safely be neglected for beams %ith a solid cross-section can

be important, such as the constraint of warping a, the ends, the eccentricity
of the centre of shear, the shortening of beam due to torsion, and the distor-
tion of the shape of the cross-section. Furthermore, local phenomena and the
distribution of residual stresses may become impouAnt. It is advisable to
develop special elements for problems involving beams of this nat ,e, or to
use plate and shell elements.

Some aspects of thin-walled open cross-section beams can be included
approximately into the analysis with the present element. The effect of the
constrained warping can be approximated by introducing an effective torsional
stiffness which gives the same relative rotation angle of the end nodes if the
beam is loaded by a torque. This is a good approximation if the influence of
the warping constraint is confined within zones near the ends of the beam, in
which case one may introduce the effective length of the beam, , - L -
(Erl/St)/

2
, where r is the warping constant.

The effect of the eccentricity of the shear centre can be accommodated
for by modelling the beam with two parallel elements, one along the line of
centroids, and one along the line of shear centres, whose ends are rigidly

eccentrically connected. The mass and normal stiffness are attributed to the
centroid element, and the torsional and flexural rigidity are attributed t,
the shear centre element.

The beam considered in [1] has a length of 16 m and is buut up from a
rigid beam of length 8 m, a doubly symmetric tube of length 21 m. and a

Ichannel of length 5j rn. The material is aluminium with p - 2766.67 kg/m, E
68 9 5 .1 0 10 N/m, and G = 2651 9 .101" Nimi. The properties of the tube are A =
0 000384 mi, I = 1.5.10-1 in', and S, - 5834.18 Nm

2
, and those of the channel

are A - 7.3.10-
" m

, I, - 4 8746.10
" 

in, I, - 8.2181.10- in
4
, S, = 0 645207

Nm
2
, r 5,0156.10

-
13 m, and the eccentricity of the shear centre is z o =

-0.01875 m. Initially the beam is located along the global X-axis, while the
shaft is in the direction of the global Z-azs. In the modelling of this

! .5
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example, one beam element is used for the tube and four equal pairs of beam
elements for the channel. Effects of shear deformation and normal force
deformation are not included. The spin-up time is 7 ' 15 s, and the final
angular velocity w" = 6 rad/s.

, 0.0

-0.

_ -.2'

-0.[

0 5 10 20
Time (S)

Figure S. Deflection of the tip.
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0~-10______________
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Figure 6 Total torsion angle at the tip
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Figure 5 shows the deflection of the centroid of the tip in the two
directions perpendicular to the undeformed axis of the beam. Figure 6 shows
the total torsion angle of the beam. The most conspicuous difference from the
results of () is that u. has the opposite sign and returns to zero when the
beam rotates at a constant angular velocity. This difference is due to the
fact that the theory in [1] is based on the assumption of small deflections
and an error in the expression for the strain energy Furthermore, the deflec-
tions shown here are larger than those in [11. This is also caused by a sof-
tening effect in the torsional rigidity for large torsion angles in our
present element.

w otludi~ng Remarks

,i- p-sent paper has pointed out the importance of the inclusion of the

£enn tric non-linearity in the modelling cf beams and the validation of
results obtained with these elements. The examples treated here, however, can
only be considered as a commencement of the process of validation, especially
as few spatial examples were considered. Therefore, a further study seems
appropriate.

For slender beams, the effects of transverse shear deformation and
elongation of the beam axis appear to be small. The rotary mertia of the
cross-section is only important if torsional vibrations can occur.

From the relative ease with which it was possible to include second-order
terms in the description of the stiffness of the beam elminent, one might
expect that an extension to higher orders of approximation is straightforward.
However, a consistent inclusion of all terms is involved and even seems to he
uannecessary for dynamical problems, because some minimal number of degrees of
freedom have to be retained.
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ELIMINATION OF CONSTRAINT EQUATIONS FROM FLEXIBLE
MECHANICAL SYSTEMS

D. M. Russell and K. D. Willmert
Clarkson Univsrs If
Mechanical and Acronastscal Engineering Departmsent,
Potsdam, NY 13699, USA.

ABSTRACT. A method for modeling planar and spatial mechanisms is presented which is I
capable of efficiently predicting the nonlinear transient response of flexible systems Large defor-
mations are assumed and nonlinear geometric properties are encorporated. In this research, each
element of a mechanism is treated as an individual body, with its own flexible and rigid body modes.
Constraints are used to enforce compatibility conditions between the individual bodies which make
up a mechanism. One of the unique features of this study is how the constraint equations are han-
dled. They are initially introduced into the global system of equations using Lagrange multipliers.
The classical solution technique is to numerically solve for the Lagrange multipliers and the geor.
allied coordinates together. !n this study the Lagrange multipliers are first analytically eliminated
from the equations of motion. As a result the constraint equations are encorporated directly into
the system of ordinary differential equations of motion, without the need to solve for the Largange

' multipliers.

1 Introduction

Most of the work in mechanism deformation analysis is based on the linear theory of elas.
hicity (1-51. In mont of these, a kinematics and rigid body analysis is Used to nolve for the
gross body motion and the inertial forces. By employing different techniques, the elastic
deformations are then found by applying these inertial forces as externally applied forces
to the linear elasticity problem. The small elastic deformations are superimposed onto the
gross motion in order to predict the total motion of each link in the system.

Recently, several researchers have presented methods which couple the gross body motion
and the elastic deformations [4-91. In these methods the configuration of each elastic body
is identified using two sets of coordinates. These generalized sets of coordinates define j
the location and orientation of a reference frame, with respect to an inertial frame, and the
elastic coordinates that describe the deformation, defined with respect to the body reference.
The equations of motion for the mechanism are then expressed in terms of these two sets
of coordinates. Depending on the required type of motion, operating speed and restrictions
on the design, some mechanisms will exhibit large deformations. These large deformations
necessitate a nonlinear dynamic d.ofrmation and stress analysis. Some research based on
nonlinear analysis can be fonna in refeences [6-12).
The purpose of thus study is to develop modeling and solution techniques, and subse-

! quently, a computer ptogram iapab4 of efficiently analyzing the nonlinear transient re.sponse of planar and spatial mechanisms. In this research, each element of a mechanism
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is treated as an individual body, with its own flexible and rigid body modes. Constraint
equations are then used to enforce the necessary compatibility conditions between the indi-
vidual bodies which make up the mechanism. By doing this, a mechanism can be modeled
as a multibody dynamic system.

Many methods have been used to represent the holonomic and nonholonomic constraints
of rigid [13-16) and flexible [17,18] multibody systems. The classical approach for han.
dling constraints, using Lagrange multipliers, has the drawback of increasing the number
of unknowns by the number of constraints. Other methods for handling constraints include
the use of; a penalty formulation (19], orthogonal compliment arrays [20], recursive formu-
lations [21), and component mode synthesis [22]. Most of the recent work in constrained
multibody dynamics use the clmsical Lagrange multiplier approach either in conjunction
with other approaches, such using bond graphs (23], or various mathematical operations, to
reduce the number of degrees of freedom and/or increase the stability of the problem [24].
One of the unique features of this study is how the constraint equations are handled. In
this study the constraints are introduced into the system of equations using Lagrange mul.
tipliers. The Lagrange multipliers are then solved for directly and substituted back into
the system of equations. The result is a global system of equations which encorporates the
constraints without increa3ng the degrees of freedom of the system.

2 Generalized Beam Element Kinematics

The displacements, velocities and accelerations of a general flexible beam element which is
part of a mechanism, undergoing rigid-body and flexible deformations, is presented in this
section with respect to a fixed global coordinate system, G.

The rigid body orientation of a beam element is described by a rigid body translation
and a sequence of rotations. The local coordinate systems, H and E, of the beam element
are attached to the endpoint of that element. Coordinate system H differs from the inertial
coodnate system, G, by a translation of A' = [X G Zo ] and coordinate system E is
defined to have the same origin as H with its X-axis, izE, colinear with the elastic axis
of the beam element. The position vector, relative to local coordinate system, E, of any
material point P, on an elastic beam element can be deridbed as,

iFD= (Xp + IS) s4 5 + ( w) + (,--+Y D+ pk,D

= (g (1)T 6 :Z*

where, 9i = [0z 0 0) is the distance along the elastic axis, : = [0 yp ip ) is the position

in the cross section of the beam, JT = [ u vi w] are the elastic deformations at z., and
iD is the deformed element's coordinate system, relative to E. The position vector of this
point, at any time, relatve to the inertial coordinate system, G, is illustrated in Figure 1,
and can be expressed as,

AP ACH +FD(2)

where,

ftiio (Xa)6.o+(Yo)iW+(Z) 1 a =(A)iG (3)
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Byu Figure a : s os ion Vector of Point PD on the Deformed Element.

Equaton (2) is def ine syterms of the inertial, local and deformed systems o coordinates,G, E, and D r'espectively. Transformation matrices are needed to express this equation
strictly in terms of the global coordinate system The rigid-body transformation matrix is,

TaE SAC, -C t. S'S'$, + C.C1 '(4)C .S'C, + S.S. ¢S'S' - $'C' C.¢C

SBy using a second order therory of elasticity the transfo-mationk between the undeformed
I and deformed coordinate systems can be defined as,

I 1 v. W ;s

TED= -(W + V) I 6 (5)
! - , v ,G) -(e+v, ) IJ

The transformations of the coordinate systems are then defined by, 6G = TGOEH and,
eG = TOETPDeD. By substituting these ielations into Equation (2), RpD becomes,

j lI,~ = x0 + TDE) + TGETED(4Z) jT (6

ftpD now represents the position vector of a general point, PD, on the element, in terms
of the fixed system of coordinates G. A complete derivation of this can be found in refer-
ence [25].

The elastic deformations of the beam element are obtained using a Finite Element
Method First order polynormals are chosen for the shape functions of the axial displace.
ment, u. and the twist about the zXH-axis, 6, of the element These values are expected to
be relatively small when compared to the the v and w# directions. The transverse defor.
mations, v and w, are described using fifth degree Hermite polynomials in order to ensure
continuous curvature between elements [1.10]
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3 Elemental Equations of Motion

In this study a variable correlation table and a set of constraint equations are used to as-
semble the elemental equations into the global system of equations of motion for a comp.0,
flexible multibody system. The variable correlation table is used to identify the ngid b-y
and flexible degrees of freedom of the mechanism and the constraint equations relate the
degrees of freedom of one element to the degrees of freedom of another element. These
constraints are introduced into the system of equations using Lagrange multipliers. The
Lagrange multipliers are then solved for directly and substituted back into the system of
equations. This practice and the use of a variable correlation table avoids increasing the de-
grees of freedom of the system and allows for a wide variety of methodologies, ranging from

f the classical Finite Element approach to a complete flexible multibody dynamics analysis,
where each element is considered to be a separate entity,

Lagrange's equation is applied to a general flexible beam element in the following section.
This includes the kinetic energy, strain energy and externally applied forces. The variable

I correlation table and the constraint functions are then presented, followed by the global
system of equations of motion for a general multibody system. This system of equations
maintains a complete coupling between the rsgld body and flexible modes, and is used to
solve for the rigid body motion and flexible deformations simultaneously.

3.1 LAGRANGE'S EQUATIONS

The matrix differential equations of motion for a single finite element of a mechanism
is developed by employing Lagrange's equations. This system of elemental equations of
motions can then be assembled into a glob, set of equations for the entire mechanism.

The Lagrange's equations for an element can be represented as,

d -_ & = o ( )

where, the vector (5 contains the complete set of generalized coordinates for the general

beam element, and £ is the Lagrangian of the element, which is defined as,

£ = KE - SE -F (8)

where, KE, SE and F. are the kinetic energy, strain energy and externally applied forces
of an element, respectively. By extracting the generalized velocities, the kinetic energy cau
be expressed as,

KE = 1

where the generalized velocities, Q,, are defined by,

• T .T. T XG OG q.(10)

where, XG are the rigid body dispiacments, OG are the rigid body rotations, and q. are
the fletible deformations. Similarly the strain energy can be expressed as,

SE 2 (11)
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The modeling of the gravitational force is straight forward and is characterized by a gravi.
tational vector. By defining G = gh., where g is the gravitational constant and fi, is the
unit vector that defines the direction of action of the gravitational force, the force on an
element is,

F9 = f - (12)

By performing the partials and time derivatives on the kinetic energy in the Lagrangian
the following is obtained,

d( KE _- C (13)

where the mass matrix, M,, is defined by Equation (9) and the velocity matrix, C., contains
the centrifugal and correolis terms.

By performing the partial of the strain energy terms and the gravitational force, of theLagrangian, the equations of motion for a single flexible element can be written in the

following form:

M. + C.Q. + KQ. = F, (14)

where, M,, C, and K, is defined by Equations (9), (13) and (11), respectively
Equation (14) is the the differential equations of motion for a single flexible beam element.

The equations of motion for the entire system are obtained by assembling the elemental
matrices into a global system of equations. This is done through the use of a variable
correlation table and constraint functions. These are discussed in the following sections
and then the global system of equations are presented.

3.2 VARIABLE CORRELATION TABLE

The elementa matrices developed in the previous section must be assembled to form the
governing differential equations of motion which describe the vibration of the entire mech-

anism. The variable correlation table is used to assemble each element's matrices into the
global matrices.

From Equation (14), the vector Q* represents the independent local coordinates of an
element which is part of a mechanism. The variable correlation table maps the displace-
ments, Q, of the element i into the global displacements Q5, of an entire mechanism. The
result is that the general elemental matrices M,, C. and K,, and the forcing vector, F,,
for each element are assembled into the global vibrational system,

MQ +CQ + K4= (

Assembling M, C, K and F in this manner permits the creation of a general algorithm
for forming the equations of motion for a general multibody system. This algorithm is
applied to each element in turn, until the equations of motion for the entire mechanism
have been created.
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3 3 CONSTRAINT FUNCTIONS

In this study each element is considered to have both rigsd body displacement and flexible
deformations. Because of this, maintaining the compatibility between elements is not as
straight forward as in a classical Finite Element approach. The variable correlation table
can be used to relate one elemental degree of freedom to one global degree of freedom in
a classical finite element fashion. This method is sufficient for relating single degrees of
freedoms of elements to each other, but, in general it is not sufficient for relating multiply
degrees of freedom. In order to handle these situations constraints will be used. Each

! constraint, 4, is represented by an equation of the form,

*4 = 0 (16)

* Position, slope and curvature are the three general types of constraints which are to.
corporated in this study in order to eusn. e the compatibility between elements and define
the configuration of the mechanism, which , an not be handled using the variable correla-
tion table. The specifics of each of the position constraints are discussed in the following
subsection.

3.3.1 Position Constaints. Position constraints are used to fix the position of on ele-
ment's node relative to either time, the ground or the node of another element, Five specific
position constraints are employed in this study. The first constraint is a driving constraint
wehich Is used to fix a global degree of freedom, Q1, relative to time. The second time
derivative, (i.e. acceleration), is the form employed in this research in order to fix a degree
of freedom as a function of time. Specifically,

= '-qocc(t) = 0 (17)
where, qocc(t) is a user defined prescribed function which is assumed to have the form:

qscc(t) = s1 + a2t + a3
2 + 44sin(asl) + as os(a2t) + usexp(ftt) (18)

The selection of the the initial position and velocity, Q' and Q, respectively, and the
constants a,, dictate the exact motion of a single degree of freedom as a function of time.
This equation is by no means unique, and was defined so that a wide variety of motions are
available. It was defined for this study to offer the properties of polynomial, trigonometric,
and exponential terms. The main purpose for thin constraint is to define the driving function
of a crank link, but it can be applied to any degree of freedom whose position, as a function
of time, can be defined by an expression of the form of Equation (18).

If a constant velocity is desired then all of the constants in Equation (18) are set to zero.
This equation can also be used to dictate a start-up maneuver in order to achieve a desired
operating speed. For. example, if a mechanism is 5tarting at rest and is to run at a constant
operating speed of e, and it is desired that this speed be reached in 1 second, then the
constants, a,, - , aq, can be chosen so that quc function is,

( O.O& + Gcos(rt 0.0 t 1< 1.0 (19)qacc() =
(0.0 > 1.0

This is just one spin.up maneuver which can be used to start a mechanism from rest and
bring the operating speed up to a desired constant velocity. By choosing different values for
a, , a a wide variety of acceleration profiles can be defined to achieve a desired motion.f ,
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The second type of position constraint is a ground constraint. This constraint is used to
fix the position of an element's node in global space. The ground constraint, which is used
in this study, which relates the ponstion of an elements node. RPD, to the fixed point, Xf,
is given as.

ii = RApD - fn = 0 (20)

Another type of constraint which relates an element's node to the ground is a sliding
constraint. This constraint is used to restrict a node of an element to move along a sliding
line which is defined by two points in the global workspace, Xt and X2. This can be done
by constrafung the coordinate directions of the node, similar to Equation (20), and/or by
using parametric equations to relate the coordinate directions to each other.

If there is a global coordinate direction, i, such that, &(i) = XI(i), then .pD must le
in a plane normal to coordinate direction s, and therefore, ipO() can be groundedin that
direction by equating it to the value ?,(I). If there are two coordinate directions which
meet this criteria, (i.e. i(s) = 2C2(i) and 21 (j) = ?2(J)), then RPo can be sufficiently
constrained to a sliding line. If it is the first node of an element that is sliding, the
constraimng of a coordinate direction can be accomplished by eliminating the appropriate
degree(s) of freedom from the variable correlation table and thus a constraint of this type
would not be ne/issary. If a coordinate direction, s, of Rpo is to be constrained then, the
Is component ef Equation (20) can be used, such that,

4' = PD(s) = 0 (211

For the case of a general sliding constraint, when the variable correlation table and
Equation (21) can not sufficently satisfy the sliding constraint, a set of parametric equations
can be defined using the points which define the sliding line, ?1 and Al. These parametrc
equations relate one coordinate direction to another coordinate direction, and at most 2
equations are required to fully characterize the sliding line. The constants of a resulting
parametric equation, P and P0 , can be used define a sliding constraint, such that,

P = r13 PD - A = 0 (22)

If Equation (21) can be applied to two coordinate directions, then, RPo is sufficiently
constrained to be along the slidingline, and thus Equation (22) is not needed. Otherwise, if
Equation (21) can only be applied once, li.pi has only been restricted to the plane contain-

ing the sliding axis, and must be further restricted by relating the remaining coordinate
directions by using Equation (22). For the general case when Equation (21) can not be
applied to any of the coordinate directions, Equation (21) must be employed twice in order
to sufficiently constrain an elements node to the sliding line.

The previous position constraints relate an element's nodal position to time or the geobal
workhpace. A constraint equation which constrains the position of a node of oze element
to be equal to the position of a node of another element, as illustrated in Figure 2, is given
as,

= MpO + TaETId - Mp', = 0 (23)

where, iAID and 11., are the position vectors of the elemental nodes of interest, TGE iS
the transformation matrix between the global and elemental coordinate systems, T,5 is the
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Figure 2: Position Constraint Between Tw eomdElements.

transformation matrix from the deformed to the u,,deformed elemer;al orientation of the
node under consideration, and J is a ficed offset vector between the two elements relative

~to the first element's undeformed coordinate system. In general, J is used to model the
offset which is often present in a pin joint.

' The variable correlation tahle and the position constraint equations presented in this
section are sufficient for defining the spatial configuration of most mechanisms. Sim~ilar
slope and curvature constraints many also be needed in order to fully define the configuration,
and insure the compatihility between the various elements of a multibody system.

3.,3.2 Sysatem of Conatmnmta. The global system of constraints equations, 4', is defined as
the total number of constraints reqwured by the configuration and node types of a paricular
mechanism. Given this system of constraints, in the form of Equation (16), the fol.lowing

must hold for all time,
= 0(24)

= =(2)

= JQ+JQ=0 (26);

where the constraint jacobian, .1, is defined as, J = 84*/OQ, ad Q are the globald egrees
of freedose of the mechansm. Their constraints are introduced into the global system of
equations in the following s.ctior uein Lag;rangs multipliers. These equations are subse-
quently ured to eliminate the Lagrange multiplierr from the dnaical system of equations
for a flexible mechanim.
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4 System of Equations of Motion

Up to this point, the differential equations of motion, Equation (14), only applies to a
single finite element. The equations of motion for the entire mechanism are determined by
assembling the elemental equations into the global equations, using the variable correlation
table, and incorporating the constraint jacobian, J, using Lagrange multipliers such that,

M + C + K4 + JT ,  = f (27)

where the vector Q contains the degrees of freedom of the entire mechanism, and , is the
vector of Lagrange multipliers corresponding to the constraint functions. By adding the
constraint acceleration, Equation (26), this equation can be rewritten as,

[M~ JT1 [ ] - [':C -KQ] [ 1 '
0M i Q QJ (28)

Solving for ad a,,

o _ (29)

By computing the inverse of the expanded mass matrx using the inverse by partitions
method, ot by solvisg Equation (27) for t4 and substituting it into Equation (26), it can
be shown that,

(- lTF . im-1 f- + [3i-iryi (30)

substituting this equation back into Equation (27) and solving for Q, results ta,

-- lilli -1f [M-I.,'I /i-i~ 31)
Ths System of second order ordinary lifferential equations of motion satisfies the con.

straints without the need to incude the Lagrase euatipiers, thereby not increasn the
size of an already large problem. This technique will be used to solve for the elastic de
lormaticas as well as the rigid body motions of a general flexible mechamim or multihody
system.

4.1 SOLUTION TECHNIQUE

In the previous sections, the general formulation of the global system of equations of motior.a
for a generl flexible me:hatista was pre~ented. The matrices M, C, K and the forcing i

, vector F in Equation (31) are nonlinear. Because these equations are nonlinea r and the
1 tran~ient solo'don is dec;red, numerical techniques are used to solve the global system of

equations.
Equation (31) is the system of second order ordinary differential equations Nhich wal

be solved. But, in order to solve these equations, they most first be rewritten as a set of
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first order ordinary differential equations which can then be numerically integrated by most
standard ODE solvers. This is done by defining V such that,

S]M iJTI [JM-JTJ - i]

- M31[JsV~Q (32)

This equation was solved using the LSODE routine from the ODEPACK library. LSODE
uses a l;, c der Adams-Moulton method to solves a system of ordinary differential equa-
tIons.

5 Rigid Double Pendulum Example

A driven crank rigid double pendulum example is presented in this saction to illustrate
the position constraint functions, and solution technique presented in this pat.er. Figure 3
illustrates the ngd double pendulum model for this exampik. Each link of the pendulum

2 el

g =32.2 :2 q
6

X

Figure 3: Rigid Double Pendulum Model.

I Lengh ofthe links 11 andli 12 1.001
ICross Sectional Aie.. A 0.10
Mass Densty 1.00
Concentrated Mass. , s 0.10

Table 1: Geometric Properties of the Rigid Double Pendulum.

is considered to be a separate element. Both of these elements have a rigid body rotational
degree of freedom, 01 and 02, and the second link has rigid body position degrees of freedom,
X and Z. The rigid body position degrees of freedom of the second link are equated to the
position of the second node of the first element using a position constraint. Thi -Ael also

P1 has concentrated masses at the nodes and i subjected to a gravitational force, as indicated
in Figure 3. Other than the concentrated masses, both links have identical material and
geometric properties, as shown in Table 1.
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The exact second order nonlinear ordinary differential equations of motion for a free
vibrating double pendulum are given in (25,26]. For this example m = mt = m2 = 0.1,

1 
-= = 1.0, and mr, = m, 2 = 2m. By substituting these values for the link lengths and

masses, into the equations of motion for a double pendulum, the exact system of equations
of motion for the rigid double pendulum studied in this example is defined as,

smi 2 + m cos(02 - 0)i + 2 msin(02 -01)01 + mgsin02 1 = 0 (33)

The solution of these equations is compared to the solution obtained from the program
developed in this study. For this example the pendulum was given a driving function. The
driving function was a constant angular velocity, applied to the first link of the pendulum,
01. The initial position of the pendulum was es = 02 = 0 and the links were given initial
velocities of 0s = lOrad/sec and 02 = Orad/sec, respectively. The constant angular velocity
for 01 was achieved by applying an acceleration constraint of di = 0 over the entire time
duration of the simulation. This example was run for a 3.0 second duration An integration
tolerance of L.OE-08 was used and 3001 data points were obtained at intervals of 0.001
seconds in 5.08 CPU seconds, on an IBM RISC System/6000 Model 550 workstation running
AIX Version 3.1.

1- 2-

3 4-
Figure 4: Driven Rigid Double Pendulum Time History.

Figure 4 shows the time history for the first four complete revolutuo~s. The positions
illustrated in this figure are at intervals of 0 015 seconds In this figure, the numbers 1,
2, 3, and 4 indicates the consecutive revolutions and the arrows indicate the direction of
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moton. The first two revolutions shown in this figure clearly illustrate the effect gravity
has on the system. The second link lags behind the first link on the up-swings and leads
on the down-swings. The third and fourth revolutions show the full effects of this as the

second link folds back on the first link. This is further illustrated in Figure 5, which is a
plot of the endpoint of the pendulum. This plot clearly shows the stall points so the third
and forth revolutions, and the second link folding back on the first link Given the initial
conditions for this example, the results from Equation (33) are identical to those illustrated

in Figures 4, and 5.

- /

.a4 .5 .1, " $ 5 iI 5 33

Figure 5: Driven Rigid Double Pendulum Endpoint Resumt.

The rigid double pendulum example presented in this section shows t.at the rigid body

aspects of the formulation presented in this study are exact. It also shows that the use of
the position and acceleration constraints is viable for rigid models. More importantly this

example shows that the Lagrange Multipliers can be solved for directly and snsbstituted

back into the original dynamical system of equations, without any loss of data or accuracy,
and subsequently decreasing the size of the problem to be solved. This same pendulum is

now considered to b, flexible in order to show that these statements are valid for systems

containing rigid as well as flexible modes cf vibration.

6 Flexible Double Pendulum

In this section the model used for the rigid double pendulum example was considered to
be flexible. The example presented in this section will veriy the developed methodology's
capability to handle models which contain both flexible and rigid modes. The model used
for the rigid double pendulum example, Figure 3, is given flexible degrees of freedom and

material properties so this case, which would promote large deformations.
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Figure 6 illustrates the flexible double pendlum model which is an extension of the r, gd
model, and. as with toe rigid example, this example is also subjected to a gravitational
force. The physical and material properties for this flexible pendulum example are listed
in Table 2

2q4 =W

q1 e,
els- M 3

2 2m qo=u
X, q7 =Z

Figure 6. Flexible Double Pendulum Example Model.

Length of-the links 11 and 12 1.00
Cross SectionZ Area A 0.10
Moments of Inertial _. , LOE02Mas Density [p 1.00
:oncentrated Mass m 0.10
Modulus of elasticity E(bI,) 1.OE+04.
Shear moMus I so 1.0E+05

Table 2: Geometric and Material Properties for the Flexible Pendulum.

This example was run with a spin-up maneuver which result in $1 = l.Orad/sec for
t Z lOsec. The pendulum started at rest, with the axial deformations equal to the static
deformations which result under the present gravitational force and an initial position of
1 = a, = 0 radians.
The spin-up maneuver for this example was accomplished by specifying an acceleration

constraint of,
1 { 10.0+ 1.0cos(*t) 0.0 t < 1.0 (34)

0.0 t -e1.0 (4

Given this constraint equation and initial conditions, this case was run for 6.0 seconds. An
integration tolerance of 1.0E.06 was used and 6001 data points were obtained at intervals
of 0.001 seconds in 2948.18 CPU seconds.

Figures 7 and 8 shows the time history, at intervals of 0.015 seconds, for the first eight
revolutions of the pendulum. The consecutive revolutions and the direction of rotation
are indicated by 1, -.- ,8 and the arrows. Figures 9 and 10 show the axial and transverse
deformations, respectively, of the elements In both of these plots the solid lines are the
results for element I and the dashed lines are the results for element 2. These figures
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3. 4

Figure 7: Driven Flexible Pendulum Example, Time History 1-4 Revolutions.

Figure 8: Driven Flexible Pendulum Example, Time History 5-8 Revolutions.
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Figure 9: Driven Flexible Pendulum Example, Axial Deformations, u.

3,

215

25

S~ ~~ ~~ 5 5 2 5 5 5~ 5 58a 55 5

Figure 10: Driven Flexible Pendulum Example, Transverse Deformations, as.
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shows that the first ink is subjected to axial and transverae deformations of 15% and
30% of the link length, respectively. As is expected, the deformations of the first element
are, in general, larger than those of the second element. The axial deformations are larger
because the first link is subjected to the additional centrifugal force because of the mass
of the second link. The transverse deformations are higher than those of the the second
link because the first element is subjected to the torque required to cause the prescribed
motion, and thus an additional moment at the base.

This example illustrates that the methodoloy developed in this study is more than
capable of handling problems which contain both flexible and rigid body motion. It also
shows that the position constraint functions work when flexible and rigid body modes
are present. The examples presented up to this point show the that model developedin this study is, in theory, valid. Now an example will be presented which is compared to

experimental results in order to verify the developed model's capability to accurately model
the response of actual high.speed flexible mechanisms.

7 Planar Four-Bar Mechanism

The example presented in this section is a four-bar mechanism whose experimental results
are given by Sutherland in (27]. This four-bar mechanism is illustrated in Figure 11. The
results obtained from the developed program are compared to experimental results in this
section. This was done in order to verify the capability of the methodology presented in
this study to accurately model the response of high-speed flexible mechanisms.

Sii'5 B B fist'-s

qsZ is -i U1W

Cs=
q2 A 94

Figure 11: Planar Four-Bar Mechanism Model.

Figure 11 illustrates the fully flexible four-bar mechanism which contains all of the rele-
vant rigid body and flexible degrees of freedom. The physical and material properties of this
mechanism are listed in Table 3. For the care presented in this section the mechanism was
started from rest with all deformations equal to zero and an initial crank angle of 01 = 0 ra-
dians. The actual operating speed used in the experiment was not known for this problem.

16
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T1 Crank 1 Coupler I Follower
Modulus of Elasticity 15 OOE+06 15 OOE+06 15.OOE+06
(E( lb/sn2

) I ____ ____ ____
Mass Density 7 920k-04 7.920E.04 7.92GE-04

Link Area 2.344E-0 2.344E-2 2.344E-0SI A(,n 2 )1
Moment of Inertial 3.827E-5 3 827E05 3.827E-5

[L( in) I
Mass at Node I O.O00+00 1.0 0.05 0 O00E+00f me i(bm) I _____

Mass at Node 2 1 OOOE-05 1 000E-05 1.OOOE-05
(M.~,2( lbim)I _____L______ _____

Length of the base link = 13.55 in.

Table 3: Geometric Properties for the Flexible Four-Bar Mechanism.

By using the information available in [271 the operating speed, 0, was determined to be in
the range 23 !5 0 :5 26 rad/sec. This Lx.mple was run at various operating speeds in this
range. In order to achieve a desired operating speed a spinup maneuver was performed.
Then the mechanism was run at the desired constant velocity The spin-up maneuver for
this example was accomplished by specifying an acceleration constraint of,

0 + acos(irt) 0.0 :5 - < 1.0 (35){0.0 (35)1.

In order to promote stability and simulate material damping, a nominal damping factor
of = 0.000002 was used for each case. Given the damping coefficient and the insial
conditions this four-bar mechanism was rus at operating speeds of e = 22, 23, 24, 25, 26,
and 27 rad/sec. Each case was run for a time which corresponded to 10 full revolutions,
after the completion on the spin-up maneuver. An integration tolerance of 1 0E-06 was
used and 500 data points were obtained for each full revolution at intervals corresponding
to the operating speed. The average CPU time for these cases was 1100 CPU seconds

The problem reached a steady.state response after 3.4 revolutions. The operating speed
was properly bracketed to be in the 24-25 rod/sec range. Figure 12 shows the results for
8 = 24 In this figure the solid line is the for the fifth revolution and the dashed line is the

f- experimental results. This figure shows that the results compare extremcly favorably with
the experimental results, especially considering the fact tht all the links are fexible and
are undergoing large deformations.

Th:s Example verifies that the methodology which has been developed during this study
is capable of handling models wnich contain flexible and rigid body motion It also shows
that the developed methodology can accurately model the nonlinear response of high-speed
flexible mechanisms with just a few elements. The solution technique for handling con-
straints. presented in this paper. has also proven to be a good alternative to the classical
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methods for modeling constrained multibouy systems.

F.ou .,a xatE .. P.P Reuts 24 -a /-e

so~
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of10 228 300 441 Sit .11 701 001

Figure 12: Results for Sutherland's Four.Bar Mechanism Example, 0 = 24

8 Conclusions

The examples presented in this paper, and those given in reference [251, show that the
technique developed in this research is capable of determining the exact rigid body motion
of a mechanical system. It is also able to calculate large deformations combined with rigid
body motion. This was verified through comparisons with both analytical and experimental
results of others. More importantly the technique for handling constraints presented in
this paper has proven to be an effective alternative to the classical methods for modeling
constrained multibody systems. Although the method involves determining the inverse
of the ma,',, matrix M, and the matrix [jM.IJTl, these inverses can be calculated very
efficiently since the Mass matrix is symmetric and normally quite sparse. This method also
avoids having to calculate the Lagrange multipliers and the constraint equations.
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EIGENVALUE ANALYSIS IN FLEXIBLE MULTIBODY DYNAMICS

BY USE OF THE NON-SYMMETR:Z' LANCZOS ALGORITHM

B B. DOAN N. KILL
M.GERADIN

21, rue Ernsest Solvay Bid. Fidre Orboss, 2.5

4000 Lidgc, Belgium 4000 1,49e, Belgium

ABSTRLACT. This paper presents .ie use of the non-symmetric Lanczos 4~gorithm in order
to solve the eigexivadue probli. of a flexibl.e mechanism around a determuied configuration.
The algorithm is implemesated iron the !AECANO software which aims at investigating the

e behavior of flexible and rigid isechauisrus wing the finite element approach.

1. Introduction

In the context of multibod) dyuami , lb? eigenw -ine analysis is mainly used to investigate
the stabilityrof the physical 2y&.is. Tl'e nr the fie%!te element method involves the handling
of large sparse system matucas. Wuhent the gorie~ric non-llnearity and physical phenomena
such as gyroscopic and iscy fiictior elfecta aie taken into account, the assumption of
symmetric positive definite s)stez raetices is no longer valid. The use of a general
algorithm sor solving the eigen.a.ue protss'.is then required. The objective of the paper
is to propose such an algorithm. The first part of the paper briefly prcsents some general
aspects of the MECANO softwa~e in which the algorithm is implemented. Tb.- oc,.Id part
mainly deals with the algorithmic aspects of the non-symmetric Lanczos algorithm. The
last part presents some preliminary results sf the implementation.

2. General Aspects of the MECANO Software (151, (6))

The \MECANO software is a sptuZ.. .. odale of the ,eneral purpose finite element code

SA\ICEF. Based on the finite element concept , it provides an answer toa in strial require.
mnents in the field of flexible articulated system analysit.
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The mediansm is described in teicz.s of absolute coordinates. The flexible, members, rigia
links anid msrcnianical joints are corsid-red as individual elements of a large library of
compone-its. The *ossokogy of the mechansm is thus implicitly contained in the finite
element mnesh descrihing the system. Th~s method of modeling is not penalized by multi.
connected topology or closcd kinematic loop,- and provides a simple and clear data set
Inratd n a largv.r finite element concept by the s'sbstructuning technique, it allows to
mi)del %cy type of flexblo link with arbitrary thape. Making use of the customized function
and/or the user element, the software also allows to model excit ations and/or components
sihich are no' standard in the element library.

The system of motion equations is denived from Hamilton's principle and assembled in
sparse form in order to handle efficiently very large models. The augmented Lagrangian
method takes into account the constraints on the system. The augmented Lagrange'
fuuctional is described as follows

C = (q)~A?4'~))4~~i(21)2

L ;s the lagrugian of the mechanism,

*q is the generalized coord'inate vector described in the absolute frame,

* is the constraint vector and A the Lagrange's multipliers,

*k and p are respectively scaling and penalty factors. They vary in terms of the
generalized rtiffness of the mechanism. The application of Hamilton's principle to
(2.1) yields to rho following DAE system

~M4 r R'(kA + p49) = g(q,q,t)(2)

If (q*,q*. j*,A*) is an 4ppmo~umated solution of the system (2.2) at time t, expressing
the correction at (r + At)

(q + Aq,4* Aq, 4.'+ A4,Ar ,AA)

allows to obtain the linearized stem' of equaaisois in the form

fMA4+CA4+SAq+kBrAIA ri

kB Aq -k&'(2.3)
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where M, C and S are respectively the mass, damping and stiffness tangent matrices
They are sparse matrices assembled under skyhne form and are also unsymmetric due
to the gyroscopic effocts and dry friction forces. M, C and S depend on the generalized
coordinates and on their derivatives.

3. Non.symmetric Lanczos Algorithm

3.1. GENERAL PROBLEM

The general solution of the system of equations

M4 + B4+ q= (3.1)

can be expressed as q(t) = qe
P
" with p ,a+ .

where a is defined as the damping coefficitnt and w is the natural frequency, In terms of
the state vec:or [q pq), equation (3.1) may be rewritten as a first order system of equations

rB [. -M] [q] - [K 0 [q](2

The standard form of the eigenvmlue is then obtsined

Ax = ABx with A = 1 (3.3)

When all the kinematic and parasitic rigid modes are filtered out, matrix B-' exists and
equation (3.3) is then expressed as follows

Cx = Ax with C = B-A (3.4)

Since C is unsymmetric, the eigenvalue problem admits different eigensolutions to the left
denoted z and to the right enoted x Orthogonality of eigensolution is expressed between
z and x. The general problem and its othogonality condtions can be written as follows

I Cx = Ax ther ght-hand problem

C
T

z = AZ the left-hand problem

with the orthogonaity reltionships

JZTCX = J (3.6)
IZTX = AJ

43
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where A is a diagonal matrix collecting the eigenvalues A, and J is a signed unit matrix
(=I on the diagonal). X and Z contain the esgenvectors of the problem

3.2 NON-SYMMETRIC LANOZOS ALGORITHM ([11,[7))

The non-symmetric Lanczos algorithm is a generalization of the well-known Lanczos sym-
metric scheme. The intoi advantage arises from the fact that the orthogonal sequences of

iterates are built up from iterations on only one left-hand and one right-hand iterate at a
time. In the deneral case, the algorithm may be formulated as follows

a. Choice of right. and left-h~and starting vectors d anid go in the form '
d0  and go =1 8 (37T)

w~here uo and vs are arbitrarily generated. In order to satisfy the constraints of the
System, it is necessary to perform one power iteration on go and do before the beginning
of the Lanceos iteration.

b. Power stesotion : the inverse iterations ase then performed on both left- and right-hand
vectors

Ukl= Cdh and Lk+s = C
T

gk (3.8)

C. Bssrthsoossssahafissn012 and d

{ k+ldk~s = "d+l - iskdk - Oh13k-sik- d~k+l (39)
70+lgk+s = '9k+1 - a.*gk - 43 5 -.- =~

The orthonormality condition between the left- and the right-hand iterates allows to
compute the coefficients

ok Q = ekghTCd,fdk+sTg, =0 = =~e~~

gk5 ,1
7d 0 7. k (3.10)

~for ~<I {
4 = gkTdk
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,
Under matrix form, equation (3.9) is then expressed as

CDk = DkTk + (0,..., 0,dk+1 ){ (3 11)
CTGk = GkTk + (0,. -0,gZ+j)

where T is the non-symmetric tridiagonal matrix

a V0 0.. . 0
7ti at 01 0 0
0 72 032 2 0 ... 0

0

0 : 0 7 -2 J

d. Sohnng the interoction problem

The interaction eigenvalue problem is then written in the form

JkThr = AJkr and TTks = AJks (3.12)

with the matrix

Jk = diag(eh)

The IHQR algorithm allows then to perform the eigenvalue analysis of (3.12). The left.

and right-hand eigenvectors of the original problem are then restored in the form

x = Dkr and z = Gks (3.13)

The associated Rayleigh quotient is computed in the form
, zCx

and provides very fast convergence to the eigenvalues of C.

The iteration procedure is stopped when either the allowed number of iterations is reached or

the convergence criterion is satisfied ([71). During the iterative procedure, the orthogonality

between the left and right sequences is rapidly lost. It is thus necessary to use the
orthogonalzation procedure of Gram.Schmidt in order to recover the orthogonrity which
increases significantly the computational cost of the algorithm.
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Let us finaly note that in case of multiple eigenvalues, the Laoczos algorithm allows to
obtain only one elgenmode at a time. the extraction of multiple eigenvalues can not be

performed without a restarting of the algorithm. The new starting vectors do and g; are
chosen orthogonal to the previously converged iterates. The restart procedure ought to be
performed several times in order to extract all the eigenmodes of a multiple frequency [7J.

3 3. FILTERING OF RIGID BODY MODES AND PARASITE MODES

The existence of rigid body and kinematic modes is indicated by a rank reduction of the

matrix B. Two solutions are proposed for solving this problem to perform the eigenvalue

analysis in the presence of singularities.

3.3.1 Filtering Operutor. This method is elegant and powerful but reqrre the a priori~determination of the rigid modes U. The filtering operator P> is then built as fellows .

P = I-.UUTm with M = 0~ 0

The rigid body modes are ltered out if the orthogonality condition is respected

UTMD1 = 0 for the right-hand problem
(3.14)

GTU = 0 for the left-hand problem

where the subscript (1) denotes the real part of the iterates. The condition (3.14) is fulfilled

by use of Gram-Schmidt orthogonalization procedure. The computation of U is however

difficult when the skyline form of the tangent matrices must be respected.

3.3.2 Posilive Shifting. If p, is a shift parameter, the solution pt = p + p. allows to
express the characteristic equation (3.1) as

M(q)q+ B*(q)q + K*(q)q = 0 (3.15)

where
B* = B+2pM,

K* = K+p.B+p!M

This method is simple and efficient, it does not alter the skyline form of the M, C and K

matrices Nevertheless, the choice of the shift parameter p, remains difficult and "jump"
may occur over some elgenfrequencies.
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At the present time, only the positive shifting procedure has been implemented in the
algorithm

4. Stability Analysis of a Helicoidal Spring

The syssem to be analyzed is a helicoidal spring designed to start a turbopump (fibure 4.1).
The cross section of the wire is rectangular. The upper and the lower sides of the spring are
constrained on two parallel planes whose distance is fixed. When the spring is loaded by
a torque C onto its upper end, the main deformation cf the turn implies coupling between
bending and torsion and induces strong geometric nonlinearities. The goal of the analysis

to deterrmne the buckling load CB for which the spring turns are warped.

The spring is modeled by 37 beam elements with rectangular cross section It is made of
steel. The total number of degrees of freedom is 222. Figure 4.2 presents the finite element

model of the system. The lower end of the spring is clamped and a torque is applied onto
the upper end io the axial direction. The incremental static analysis is performed until

buckling occurs. When the spring is warped, its turns are twisted and the analysis diverges
by numerical instability. In order to determine precisely the buckling torque, the load

increment is refined at the end of the analyss.

An elgenvalue analysis is performed after every 5 increments to determine the residual
stability of the system. Buckling can be detected as the moment when the first Nibration

frequency of the system becomes zero.

Figure 4.3 shows an intermediate configuration and the buckled one. Figure 4.4 displays

the rotation angle versus the applied torque, showing that the spring response is linear
up to bifurcation. Figure 4.5 shows the evolution of the first five eigenfrequencles versus
applied torque C. Under extenal load, the system is very sensitive to nonlinear geometric

effects and one notes the contineous decrease of the first eigenfrequency with the torque. A
rapid decrease is observed just befor the occurence of the buckling phenomenon

5. Conclusion

The non.symmetric Lanczos algorithm is an efficient tool to investigate the stability of
flexible mechanisms. It permits to take into account the influence of the mechanical effects

introduced by the modeling of the gyroscopic effect and of the dry friction. Improvements

such as an acceleration technique by use of Chebychev polynomials 13] would still render it
more attractive. The algorithm is still under test on more general examples.
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Figure 4 .1 the helico:dal spring

~C7U

Figure 4 2 Finite element model of the sprIng
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Regulariy deformed coniguratton before buckling

Buckled confiquration

FAgure 4.3: Two configurations of the spring,
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Figure 4.4. Evolution of the rotation angle in terms of the applied torque
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Figure 45Evolution of first five eigenvalues in termas of the applied torque

276



0. Refence3

1 F CHATELIN, Vateurs Propres de Matrices, chap. 6, pp. 180-188, ed. Masson, 1988.

3 Y'SAnase yiqev dcelerSasiomeTechniueds forbls Colvqg Nansrmtnal EenCalcue
Pre Sructres Maymtc 11f1 1993,tain, voanl.42p.56-8,Arl19.

4NKM. GE ADIN, .AEgnale Atgoitlirnes Sahilnty Tan e rzli pes enal

y5. of CRDOAnSem, At InteAprnactioa Modhalis Analyss, i. Teis, ier-
siy9f88. ,199

6.M. GERADIN, Asp.t RXN TlioredeVatos, MtL sd ApOh eediints 3. 4

9.0 EAn ODE. Damdes sines Artt as Flenbgl'Iessr dolu Ntoione Jolurnl
aStrictur88, Nmber 11-9, 1998.GesRne

I 10 SAMTECII S.A,, MECANO and VYNAM: User MaInUals, release 4 2, 1991.

277



278



Free-Floating Closed-Chain Planar Robots: Ilinemnatics, Path
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Abstract

The study of fiecfositotg mnanipulators is iopoiiant for the success of robotics programss is
space and io ihe design of insovative robot systems which coo operate over.a large worhspoce Io
ordei to siudy the funidamenial ibroreiti and experimenial issues encountered in spice robotics,
a closed-chxu planar mnanipulator was built at Ohio Univrrsity (OU) which floats on a flat table
sirg air bearings. Dur to the absence of external forces is the planr of thr tabie and couples
normal to ibis place, the hrrser momerntumo is %br planr and the angulsar momentum normsl to
ihis plane air consrrved It us weli known that ibr inear momentusm equations atr holonowic
while the angular smomentumo equation to sunrholonoroic Due to this norbolonowic behavior,
the paib-plaring schewes cowmmoniy used for fixed-bse msanipulators do not directly apply
so fre-floating moanipulators In this paper, we preseot as algonthms for wotion pianning of
planar fre-floating wanipulators based on the iwers posiiios kinesmatics of the niechanism, It
is dewonstrated that the intne position kinematics slgontbia, comsmonly used for fixed-base
manipulators, can he successfully apphied to free-oaling moanipulators using son iterative search
procedure to satisfy the nonholonotonic angular momentum constraints Thubi procedore result in
paths ideotical to those predicted by inverse rite kinemsatics The inorre position hiormatics
algorithms is then used to avoid singularit durng motion to result in successful paths The

a results of the simuiation of this algorithmn using parameter estimates of the OU fre-float'ig robot
are preesed

1 Introduction
Satellite-mounted manipulatoes will ploy us important role in the construction of the space station
asd in the fuiure missions for space inspection and repute Over the list decude, several ieseurch have
bees reported on moanipulatiou system which have frelfoatrsg huse Longian et ul [7] presented
a avy to control the end-effector trajectories accouniing for base motions Umetuni snd Yoshida
k[131 [15]) presented the notion of generulirod Jacohbins aud soggested an algorithm for dual-uris
coordinaion of free-floating manipulators Alexunder und Cannon [5) reported experimental results
on a free-floating manipulator Vafut [141 presented the useful concept of 'virtuul munipulaors' up-
plied to open-churn floating nmanipulators Pupudopouoe and Dubowohy ([91, [19)) studied control
algorithms and dynamic tingolatities of free-floating manipulators Schneider and Canon [111 pre-
sented a strategy for cooperative manipulation of floating rubsts Agrocoul et al [21 reported studies
coudiacted on singulzuties of the Jocobioc mnpping of free-flootiog open-chain manipulators They
olso reported reseurch condacted on worhspace boundaries of freefloating closed-chuin manipulators,
and algorithms lor dynamic siwulation of these manipulators ((1], (31) luhierjee and Naaua (8]
proposed path planniog algorithms for space manipulators

L 
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Figure I A 3-D solid model of a tree.floating closed-chain mampulator built at Ohio University

From the above references, it s well established 0bat free-floating manipulators are characterized
by nonholonore corstraints Due to nonholonomc constrints, the conventional path-planning
schemes applied to flxed.base manipulators are not directly applicable to free-floating manipulators
The algorithms proposed in the literature for moioQ.plannmg of free-floating manpulators are either
aimed at computing the joint torques using the Jynaric equations of motion of the system ([10], (5),
[15], (11l) or the joint rates using the rate kinematics of the system ([8], (4]) The approach presented in
this paper differs from these two motion planning approaches as it uses the inverse position kinematics
of the system for motion planning. The inverse position kinematics is a well accepted method for
motion planning of fixed base manipulators but it has not been explored for free-f.oating manipulators
due to the presence of non integrable angular momentum constraints In this paper, we demonstrate
that using an iterative search procedure to satisfy the nonholonomc angular momentum constraint
equation, the inverse position kioematics can be used for motion planning of nonholonomic systems
The results of this algorithm using parameter esturiates of the OU free-floating robot are presented

The paper is organized in the following w%y: A description of the OU free-flo.ting closed-chain
planar manipulator and its mathematical mo4el is presented in Section 2 The position kinematic

equations of the robot are developed in Section 3 The rate kinematic equations are developed
in Section 4. The algorithm foe motion planning using inverse position kinematics is presented in
Section 6 These are followed by conclusions of this study

2 Kinematic Model of the Floating Manipulator

The free-floating planar manipulator, designed at OU, isa six revolutejointed closed chain mechanism
A 3-D solid model of the robot is shown in Figure 1 The bs- of the robot floats on a flat granite
surface using four air bearings The air a provided by a compressor mounted on the base The
end-effector of this robot connects to the base via two series chains, each with three revolute joints
The robot has 3 degrees of freedom and is driven by three D C servomotors All six joints are
instrumented with intr-mental optical encoders The robot is controlled by a PC 486 machine
equipped with motion control hoards An overhead X-Y position sensor (not shown ia the figure)
momtors the position of a moving point on the robot relative to the table

A fourtha m msts is saeen h the oloS modl so souterbisice iht sn on the t,o chu,
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Figure 2 A mathematical model of the free-loatmg cosed-chain planar manipulator

A mathematical model of this mechanism along with the link coordinate frames is sho.n in
Figure 2 A coordinate frame .4 is fixed inersially at the center of mas of the mechanism A

o coordinate frame YO is attached to the base link (link 0) of the robot at its center of mass he
mass of this link is m, and the centroidal moment of inertia is lo A coordinate frame Y" -s fxed

* to eucry link a of the chains ; E A, B at the joint where it connects to the link a - I The X acid %
coordinate axes of the frame Y, are xt and y, respectively The relative joint esplacement between
to successive frames Y.11 and Y, is defined as 60 The origis ofY. and Y ace located respectively
at l and 1g from theorigin of.F0 along the io axws The length oflink in chain) is'L Th' center of
mass of a link t, i-z 1,2, of chaiun is located at IPi4 relative to ;' The end-elfector reference point
P is measured in F by th- vector r,. The point P is saumod to be the centroid of rae end-effector
link The aa of this link is m. and the centroidal moment of inertia is I., The mass of a Ink i,

1.2 of chainj is ml and its centroidal moment of inertia is I
The parameters of the OU free.floating robot computed from a computer solid model are listed

in Table 1 The free-fl,ating manipulator is described by nine variables the three variables zeo, 00
describe the position and orientation of the base link in the inertial reference frame Fr, th va.ables
9A, OA, and 8A describe the rellsui orientation of the links of chain A, and Of, e00, and 03 are
the relative orientation of the links of chain B The end-effector position is given by (z., p.) and the
orientation of the line QP in the fixed frame by the angle 0. These twelve variables are the variables
of interest for the manipulator

These twelve variables are subject to nine constraint equations The position vectors r, from the
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Table I The parameters of the OU free-floaioit robot compaited from a coropuer so<lid model

Origin of )c to the reference point on the end-effector via chains A and B are

r.= + l~x0 + ljA + lA~xA + lA*A
B ao+l~o+lia + SjnB + I* 1

where r 0 is a vector from the origin of the inertially fixed frame, to the origin of the bse link This
results in four realar equations on the twelve voarables The angle closure via the two chains reaults

0, + f+1.+9
I Io~+ + -e (2)

where a is the cone angle of the end-effector plate s shown in the figure The linear momentum P
of the mechanism is-

P i rs~o mr~ +rr~r +m~r, + rrf] Bj + rrsirO (3)

where ro, r., s-r, are respectively the velocity of the tenser of mnass of the links Io the absence of
external forces in the plane, P as constant Asaummng that the free-floating manipulator is released
from rest, withoot loas of generality, P = 0 The line momentum equation (3) is integrable On
integrating this equation sod with the choice of ;7 at the center of mass; of the mechanism, this

integral reduces to

Mosro + MA rA +MAr + mres, + Maer + marB, =0 (4)

oLre r, in a vector from the origin of )c to the masa center of the link i of chain) One interpretation
of ibis equation is that the center of mass of the mechanism remains at the origin of F during the
entire motion of the mechanism The posion vectors sr, satisfy the tollowioag equation

r.r.+ D INOt~ +l ~ = , ,3 j=A, B()
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The annular momentum H about the center if arons of "i.recrnantm is computed b) ummmg
up the angualur momentum ccntribiutirs from the tidividua)linoks This angular momentum.,

H = rn(ro xurn) + n(r, x %,)

4 E[,Ae u rA + m-(r x rFJ

j+(I08o + 1.9. + t(,A 4., + 6,) +

Onue to the pianor structure of the robot, H- is along a directtin nornial to the plzoc of niotion of the
trobot In the absmnor of external forces in the plae atid touples normal to the plano,.a i. -oustaing

Since tic system starts from rest, H = 0 This angulaor momenta'si eii~iation to not integrable auid is
a nonhofonor=t equation

In suetmarv. tht fteefloating manipulotor is described by 12 osriablei These 12 ovails as.-
isfy eight positin constonint equations, too: prastion loop closurc icqns (1), t-vo %igle loop closute

rc-qns (2). tico center of ass soistratet eqos 1q), and one non~iutegrable rate constraint eq (6)

3 Inverse Position Kinematics

The inoerse position kinematics problem is to deternme the joint angles at a given end-rifector
puottion and orientation Fot zren end-effecter p-sitoua (z., p.) and orientation 0,, the eight position
constraints outlined in ;he oust section are not enough to give a unique solution us the angulsr
momentum equation can riot be used in the solution of the inoerse pocitiun kinematics, One more
aiable, which we choose as the base orientation 6o ueeds to be specified to solor for the angles
uniquely As quite eoident, any arbitrary value of 01 cannot he chce-n for the inverse solution at a
point but it moot be such that the solution, at two successive poit at isfy the srigular momeituis
equation With thin mrotivation in mind, tie patn-planning prlem has been broken into two steps
(a) ontain the inverse solution-, at a gives Ir., , p. ) ising otiiy the 8 position constraint equations
with the bWe angle On t ratred as a free variable, (b) use an iterative search procedure tn determine eo
such that the joit angles satisfy the difference icorm of the angular mnomentumn constraint equation
The part (a) of this procedure is devoibled in this sectioni while the part (b) is describcd in Section 5
In this section, we also show that the inverse kinematic solutions of frce-floating robots have features
very different from those of the inverse solutions of 5t -il similae fixed-hae manipalatora

On equtang the exp~esabons forer, - ro from eq (V5 we obta~n
5' Oo + 0i2tit + Qis3XA + altk + alik =n pt (7)

'4Substituting eq (5) into k4). -i obtain

A~o+BX lA+D t+El+Fc xf (8)

O 1soalving ro from eq (1) and aubstituting in the abuse eqlution or obtain

oniwo + to2X 
9  

0 5y5i + sisal + iBx =o p2

3All coefficietits and veetors appearing in the ,i.,t three eqluatlons are listed in Appenini I
The eqs (7) aod '9) insolve the coclfficts as, and the sectors Pt, fir which are known at a gi 'en

r.When resolved atong the ioordi sate dapovtions of F These two vector eqouvioas result in four

C 283



Y Y

4? x 0

Figure 3: The inverse solutions for an end-effector poition 1- 0S. - 12 0), orientation angle 0. 15t0,
end base angle 00 = 60",

acalartequations which involve 'cos' and ,snn' of the angles #O, OA go, 0201 and 002 A notation such
a 60A is Oo + E1. OA. The four scalar equations must be simulltaneously solved for the four joint
angles. On treating 60 as a free variable and using the procedure described III Appendix 1, the four
equations can be reduced to one 8th degree polynomial equation in the variable zi

CoO+atZ +42Z%2 +a3C13 + a4CI + aSII

where zs = tus(!J.).
The zeros of this polynomial are the solutions of CA which satsfy equations (7) and (9) Upto 8

roota of CA (or 08) are theoret-cally possible On substituting one of the possible eight values of X.
in equations (30) end (31), we obtain two quadratic equations in z2 These two quactratics result in
one common solution. Hence, a maximum of 8 solutions of (Ol 6z are possible For each feasible
(008,09), there is a unique Solution for OA~ and OA from equation (28) and (27) Rom this procedure.
theoretically, for each end-effector pcsitiou/orieatation end a specified orientation of the base lik,
upto 8 solutions of the joint angles are possible. The details of this algorithm are available in (6)

Fn :3 shosa set of four solutions for an end-effector position end orientation with the pa.
a tr"fthe OU free-floating robot It may be instructive to contrast these Inverse solutions with

are fr slutnsandy similar fined base manipulator. It is well known that for the latter case, thre
arefou soutins ndthe solutions are two pairs of mirror images. Fox the fre- floating case, we aee

from the figure that there are no mirror images in the four solutions

4 Inverse Rate Kinematics

Eventhough the focui of thin poper ia to provide a tootico ptanning algorithm using in~erse position
kionimatics, It is Important to develop the forward and Inverse rate hinematics relationships between
the end-effector end the joint variables The inners rote hiuematirs, on direct integration, resulta in
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acceptable motion plans for the system These motion plans obatined via direct integration provide
an easy way to compare and evaluate the effectiveness of the motion planning algorithm using inverse
position kinematics In this section, we willdescribe the rate relations in twosteps. (1) the constraints
on the nine rates dtscribing the mechanism Z0, yo, 00, $A, A, 03

A
, 8, 8, , and (2) the mapping

between the end-effector rates Z., Y., 0. and the joint rates.

4.1 Joint Rate Constraints

On differentiating the X, Y position loop closure equations and the angle loop cloadre equation,
we obtain three coastraints on the nine rate variables. On collecting the terms of the X, Y linear
momentum constrat and the angular momentum constrant, we obtain another three constraints
on these rate variables. These six constraint equations can be written in a form Kq = 0, where K is
a (6 x 9) matrix:

0 0 0 K4 is K~n"is X17 I: Ki
0 0 0 K24 K2s K26 Ki7 K2s K20 0 0 1 1 1 - I - -I(

!K41 0 K43 K" K4$ 0 K47 K4* K49
0 Ks: K t KS4K5 K57 Kss Kso

K K63 K44 Kss 0 Ksi, Kes Koo

and the vector q 13(oVOOO, O, O) The constants K42, Ksi, Kst, and Ks2 are
identically zero. The remaining C.efficient. are lied in Appendix 2. Using the above matrix, six

lates can be solved i terms of the remaining three, These three independent rate variables play the
role of the active or the controlled joints. Defining q, as the vector of the three active joint rates and
q, as the vector of the remaining six joint rates, the equation K9 = 0 tan be rewritten as:

hKrq, + Kq. = 0. (12)

where K, and K, are partitions of K K, is a (6 x 3) matrix and K, is a (6 x 6) matrix q# is a
3 x 1) sector and q, is a (6 x 1) vector Using eq (12), q, can be solved in terms of q,

q, = -K-'tKeq, (13) i

If the elements of the vector q are permuted according to the choice of the active joints, such that
q = Pq', using eq, (13), the vector q' can be written in terms of q, 

as

q' [q 
- q  

(14)

where C is a (9 x 3) matrix formed by augmenting a (3 x 3) identity matrix E3 with the (6 x 3)
matrix -K,-'K, Tnts matri s C in

C K,]E3 -

4.2 End-Effector Rate Constraints

The ead-zffector rates x., y., and 8. can be related to the joint rates in the following way. The j
position closure eq (1) and the angle closure eq. (2) obtained via chain A ace differentiated and
colle.ted These end-effector rates as a function of the joint rates are

X. = Pq (IG)
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where X, = (n,,y, 0)T, P is a (3 x 9) matrix 'The structure of P is as follows

1 0 P13 P,.P 5 Pe000
41 1 P13 P25  P25' P20: 000 I (17)

10 I I 1 1000

The terms appearing in the above equation are defined in eq (42). Using eq (16)and (14), the
mapping between the end-effector rates and the active joint rates is

XmJq, (18)

where J = PPC. J is the well-known Jacobian mapping between the end-effector rates and theactive joint rates. In order to determine the joint rates for specified end-effector rates, the following
9 first-order nonlinear differential equations must be integrated'

q =PCJ-'X, (19)

For successful motion planning of the robot, the following two conditions must be guaranteed. J
exists and is invertible. J exists only when the matrix K, is invertible. Hence, we will find the
conditions for the mvertiiblty of K..

4.3 Invertibility of K,
The structure of the matrix K, is dependent on the choice of active joints for the mechanism In
order to give a geometric interpretation of the invertiblility of the matrix K,, it will be best to choose
a set oi active joints and partition the matrix K,. Since the coordinates zo, yo, and 

0
o can not be

directly controlled, they are not good choices for the active joints. For the sake of of discussion, we
choose the active joint mector as q 

= 
($A, $A, 03)T, the matrix K. becomes:

0 0 0 K1r K K28  K29

K, = 0 K -1 -I -I (20)K= K4t 0 43 K47 K4# K49

0 K 2  Kat K6r Ksa Ks90 0 Ka3 K6r Ke. Kg

The above matrix has the following structure

where 0, Q, R, and S ate (3 x 3) matrices and .1 elements of 0 are zeros R is an upper triangular
matrix. The inverse of the matrix K. is

From the above equation, we see that the inverse of K, exists only when the inverse of the matrices
Q and R exist Since R is an upper triangular matrix, the determinant of this matrix is zero only
when one of Its three diagonal terms K41, Ka2, K63 are Zero On examining K4 1 and K5 2 , we find
that they ate the total mass of the system, hence, are never neros Physically, K1

3 is the sum of the
moments of inertia and is also nonzero Hence, the matrix R is never singular

The matrix Q a formed from the three loop closure equations These three equations for the free-
flating mechanism are identical to the position and angle loop closure equations of a structurnlly

L_ 6
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Figure 4 A configuration in which the joints 1, 2, and 3 of chain B are in a line At this configuration,K, is singular if $, 
A

t, and B3 are chosen as the active joints,

sirmlar fixed-base mechanism. Hence, the configurations where Q is singular is identical to the singular
configurations ofa structutally sirrlr fixed-base mechanism. From the work in literature (e g, (12]),
the matrix Q is not invertible whenever a line passes through the three joints of chain B, i e., the
chan B is foly extended outwards or is fully folded inwards, A configuration where K, is singularIs shown in Figure 4. Similarly, it can be proved that for a set of any three active joints among the
Joints of chain A or chain B, the condition of singularity of the corresponding K, matrix is w hen the
three unactuated joints are aligned, a e., a line passes through the three joints

4.4 Singularity of J
The singularities of the J matrix have also been termed as the 'dynamic sing'uarities' a the literature
(9]. Unlkethe Kmatrix, at is not possible to prvda gometriciterpretationftheionfgurations
where the J matrix is singular.

5 Path Planning
One method to generate the motion plans is by direct integration of the rate eqs (19) by choosing
a desired function X.(t) In general, this method will work for short paths and will fail at the
configurations where K, or J become singular.

The nverse position kinematics algorithm can be also used to plan paths between an initial and
a final positmon/orientation of the end-effector The essence of the algorithm for motion planning
paths between two points is described m Table 2 A feasible assembly configuration is assumed at thestarting point of the path The path is divided into a number of intermediate points At a step + Iof
the algorithm, the current value of the base orientation (0o), is used to deter 'ne the search interval
for (

1
o),+I. The search interval for (0o),.+i is discretized and correspondu a a value (0o).+s, the

inverse kinematics procedure is used to compute the joint angles. The multiple solutions obtained by
the inverse kinematics procedure are sorted to determine the best solution near to the joint angl .' at
'he step a With this best solution, the following difference form of the angular momentum equatson
is evaluated.

I iA zo + K 2 e yo + Ks A O + Ks4A 0
+K . A 0 ~sA + K4, A Ole
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Tawee 2: The algorithm to obtain motion plas using inverse kintcs. (

of the rate kinematics. The bae o eientation of a ote variable computed between the steps us+li

thediret inegrbaoints rtin s The invrse pa sitth a asp leranc e iret Iirani to

It must be pointed out, however, that the use of the inverse petition kinematics algorithm does
not alleviate the problem of singularities encountered in the direct integration of the rate kinematics
equations. In fact, one can teonstrae t he inverse potition kinematics and the inverse rate

a kinematics algotithm break at exactly the same point when encountering a singularity In came of
rate kinematics, due to ill-conditaoning of the J matrix, the algorithm breaks down. In case of inverse

pthio kinematics algorithms, the search procedure does not find a base angle (0e),+% close to (no)
which satisfies the difference form of the angular momentum constraint equation.

The inverse position kinematics algorithm, however. can be easily modified to aviid singularities

where at can not find a set of loint angles that satisfy the difference form of the angular monientuinconstraint equation. These singularities are avoided by taking a deviation in the Cartesian path in
order to satisfy the angular momentum constraint equation. Figure t shown the joint angles for a
straight line path in the Cartesian coordinates using the three algorithms pyopesed in this paper. of,
(a) direct integration of the rate kinematics. (b) inverse positron kinematics without excursions at
the singularities, and (c) myers- position kinematics allowing for excursions of the end-effector point
near a singularity This figure shows the Cartesian path, the base orientation angle, and the joint
angles OA, OA From the figure, we observe that the integration of the rate kinematics breaks down
in the mddle of the path The inverse position kinaotic algorithm goes through jumps in the joint

cnglrs at the positions of the singularity. The expended inverse kinematics algorithm which allows
excursions in the end-efector path is smooth at th soingulartes and succesufully reaches the goal
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Figure 5 A sucesful path plan usi () dect ntgtion of the ate kinematics equation, (b)

inverse position kinematics algorithm
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Figure 6: The in008100 plan for a stri~ht line path in the Cartesian coordinates using the three algo-
ritb~is proposed in this paper, i e., (a) direct integration of the rate kinematics, (b) inverse position -

kineimatics sithout mrii~Sofls at the singularities, nd (c) inverse position kinematics aloing for

excursions of the end-effector point near a singularity
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6 Conclusions
In this paper, we presented an algorithm for motion-planning of frfe-floating robots using inverse
position kinematics Eventhough free-floating manipulators are characterized by nonholonormic con.
straints, we showed that the inverse position kinematics coupled with an iterative search procedure
to satisfy the nonholonomc constraints results in motion plans predicted by direct integration of the
rate equations The problem of singularities which are encountered during the integration of the rate
kinematic equations are still faced in the inverse position kinematics algorithm. However, it is easy
to take excursions in the path using the inverse position kinematics algorithm to avoid the singular
configurations and reach the goal, The results obtained using the inverse kinematics algthm were
compared with the direct integration of the rate kinematics equations to highlight the sndaoities and
differences between the two approaches The authors feel that this nethod of motion planning which
was applied to free-floating mampulaors can be successfully applied to other classes of nonholonomic
systems
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8 Appendix 1

8.1 Derivation of 8th degree polynomial
All coefficients appearing m this section are listed n Section 8.2 The equations (7) and (9) when
resolved along the coordinate directions of 7 have the following form-

i 
(24)

and

Ott1 0t13~ Os (25)
0 2: 0 2 3 [ 0 2 '  a : l o r : p 2 F

The eqs (24) and (25) are used to solve for the 'sin' at.d 'cos' of the angles OA
4 

and 9A in terms of
joint angles 60 and 002

CA a, fuifitt+ 3~i- fuc+3ttf (26)
)3 1i[l~s~0z~ + its'A 102

T (27)
II

The angles #0j and 00 can be eliminated by squaring and adding the component equations of (26)
and (27) The reunilting equations have the following form:

+71359 + 7t4 +715$8 +716 0 (28)

7 2i(CAgOBI + Sffs08) + 722 9
S J +723$081 + 7124CO + 72+542 + 72 = o (29) 9
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+ 11

On substitution, c __ a _-, _ s where r, tan(,-,, and

12 = ga(. , the above equauons can be written as polynomials in z, and X2

+ 0O IZZ 2Z22 +4. 1 t 3ZX 2 +. 0 13I3 Z il + 0 14Z 12

+%IsZ2' + 0'e:lZ + 
0

1n7X 4 Vb'S'2 + 019 = 0 (30)

-,-, SC22 +" OU'Z IZ 2 + 0 27i l 4" 2,SX2 + 0 2 = 0 (31) +

On collecting the Coefficients of X2 , Z2, and 1, these two equatons can be written in the following+ form:

ratio: 1,12 2 X + 0I 13 1 ~ 2l + V516,l + t01o

14Z12 017XI + +1 1 (32)
04ZI2 +" 0XI +" 029 j ]' = 1 00 1

The set of the above two polynomial equations must be simultaneously solved for the variables zi
and X2. The method of 'dialytic elimination' is adopted to obtain the solutions. Asnurnng z2 0 0,
the two equations are multiphed by z2 to form additional two equations The above two equations
of (32) and the two additional equations generated when by multiplied by zn can now be written in
a matrix form:

V
2 
1 2  C53  0 = (33)

0 7l
2  

91
2  

13 X2 0

[ ll X
2 2 

X23 1

where I, are coefficients of the matrix in equation (32) For this set of four equatuons to have a
common solution, the determnant of the (4 x 4) matrix in eq. (33) with coefficients I,: must vanish
Mathematically,

(-,isii - Xi272r)( ri2 - r23713)

-(oIIIer3 - T21-13)" (34)

Making these substitutions,

-- 4
i5"922 1212i E ~Ol,0l'

r12T23 - "22XI3 EG2Z,
..a

the resulting determnant is a 8th degree polynomial in zi and has the following form

G~~o "+ O I Z I + " O ZZ I2 + " a 3 X 3 + " 4 4 ' + $

+ e zi
t 

+ 4  a7 ZI+0, (28)
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8.2 Coefficients of the inverse position kinematics
In equation (8), the coefficients are

At n Me+mA +MA 2 
+MB +n M1- +M.A

A = + 2

, AIA AA)
M, +1A (. 

2  
M 3Di MA A M

El 
3 

13A

F, M1I8 +MNefGi =l 82t (37)

The coefficients appearing in equations (7) and (9) are-

_l 4 -, all = , 13 J A x

ol, = -A
B , 

Ci, = -11., as - 3-

a2l = i1- Alf, a22 = C. 2Ai = D,3 3
Ck:4 = F, - All?, all = Gt -A1128

p2i = -Air. - Ei * + Al, lf (38)

In equations (24), and (25), the Y, and Y components of pi and p are
p, th= coeffi)ient arc
P is iis = y isas, -clina a3

( D _ tA)jO + 13 So - 13 DA

p' a: - toa) a -Ec aunts¢

D ' 0

pr =- -isp'(Bl- - =l e~ tfC) A + A 4o)
- 3

(39)

In equation (26) and (27), the coefficients a (e

!2= r,+ 0i30, O
2

l -oai23 + 013025
D D

aTiS 2 412a24, OIL4 = - *in1
8
i5a

Ol 
=  

0+++. 1+ +- O8ii4- Isr o -tD D
aI: 23P'l- a13P "2, -226,Z 

+ 
0I2Prt?

o D (40)

-here D = 12Q23 -al~a22 The Coefficients in ecloati'n (28) and (29) are

7Yit 
= 

20,1012, 71: M AI1./1,

713 = 2$11,311', 714 23xj 1.3,

71s = 20123'13', 716 011'l + ,312' + 013' + 113" --1
t2l 

= 
2021,622, -1:2 202,t023

723 
= 

23 21r', -t:4 
=
28 22023

"t~~_25 = 2,322023'. (Z. = 
2

+2 + 2 4 3;
'
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In equation (30) and (31), the coefficients o, are

9:1 711 - -112 - 714 + 716sl Oil 2713

03l ' 
2

713, 14 = -- it - 712 + 714 + 71

ris = -7I + 712 - 714 + tie, t16 = 
4

7it
017 2-713, va c: 2-11

6

In ( t 7he + 712 + 
7
14 + 716

021 72 --112 - 124 + T24, 922 = 2723

023 = 2-/:s, u24 -72t - 722 + 724 + '12i
a 25 = -721 + 722 724 + 72, t26 = 4720 $27 = 2723, w2a z: 21MS

09 = 72122 ttu+ 724 + 72ii (42)

In equation (35), the coefficients are

a10 = tist2g - 021#1

ali = V1ati, + tistue - Wugtte - Otint,

a12 = 01t024 + 01ett + 0u2016 -250i
a 0112S + 12026 + l1bt5023 - 9110l

-022016 - 023513

all = t0i1t + 012023 - 0 -016- 02215

C14 = 0t1023 - 02113 (43)

The coefficients a, are

all = t8 29 - 0129

all= 169 + t16
2
7 - 0ti902 - tt24

air = t:302 + 1t 27 + t1i94 - t231

-026017 - 024014

0a3 0102 +un 02t4016 - 0140i6 0170t2(45

02
4  

= Vlitt- v t3 (44)

and the coefficlent (3, are

I3a = 01 9 - V19
431 = 2129 - 015272 t - 2 1702S
al0,= 1109 "-t 01$024 + V1327.: 0 2109

- 02SO14 - 01722
asa 0191027.. 0120 24 -2OL 02201- 94
"34 V g11924 --W14921 (45)

The ¢oeffictent3 in equation (36) are

<a , = a l1 a20 + 0 10021 - -U 310 30'I .
1  2. + allot1 + ai0i- 2 - 2a3a 

l  
- a,

a3 = 013a2i + alot + aIIa2 + aia23
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-2aioao30 - 2G3a32

a4 = 024a22 + 013021 + 0.2022 + C223 + a1

2"M030 -
2

a30o3 - a32

a, 0-a12I + 013a22 + 022G23 + 022024

-
2
o31a34 - 2032a33

a0 = 24022 + 0:3a23 + 4n2a24 - 2. 3 - ,2

07 = i4.a a 3a24 - 234033
00 = 024024-a (6

a34 

(46)

9 Appendix 2
9.1 Coefficients of the rate equations
The terms obtained by differentiatig the position loop clmure equations Are

K14 = I'$'0 + 1f 2 , 2 + 1330223
-- iA 4A +lff,

4 K = -ls - ,01 3 1 23K13 = -Af 2 + Iff 21 01-- 33 0123

Kra = IAfs0'2 34K
24 -- -lt S44 - 170~2 -1 3

K, = 18cf,B

-- '.Q B 3

K, = -l012 01

K19 = -13f S f23

240 = _)fe IfJC 112
K2s = -IACOf2, _(47)

K3 OMlp

K4=-mlf 2- aaf (Iaa 1~f 2

K a = --- CO-2 3K = lol + Jof 2n + lfBof2
2

-0(l sf + If 0f3  1 o 23

K , = _B B 2

The term of the linerr momnentumn equations are

K43 = %fYO

K44 = rMAl, +A - (I Aof + l ,Af2 )
1 +' 5 - 2 o1 2 +012 *,

K" = B IB B - + BIs

I5  o r 2 01 j a

K46a = m ~~t ,/t*r + 13Sot23)

K49 -- -11e
3 0123

Ks2 = 0
SA523

= 
-Mlzo

K =4 = lJCA +to(If Aot +ifof,)

j' :KS5 = 0AJ COA,

" .K5 t-M I O C.1O + MS (I1 CoB 1B.cos
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+M,(IOCB + 1412i + B013
8 B~c + ISI+

=5 M,138412 (48)

The terms of the angular Momentum equation are

Kes = It + MAZA (lJOAC + LJAc6\) +
MAI(lAso + JA A ) + 

1
JA +

MAZA (LAsO + J,, + IA+Ij
m.2( 0 1c .24c,2)+cj

m,Ay (SO + JAA+ I SA+ 2~) +

M'1. + rn 8 4 1 +4 129C) 2 + 'CBM
M)0O0(lftso + IB0SB) + 17B +,ias

.4+.IO(lc + B +

M=. m11ro + IC) + la CD~

MB v I (S + 10so
4 

+ 1 o )+ 2
-2  or 42 -' 2  01 4

K64 = MA ZA JA Co + MAVAJA. $A + ;-4
m)4JA )c + MA + n0)0Q0, A)0,

t%28 + 1 orz0I)t0 + 1342 + Ie0,)4
MA y (0SA0 + JAti SA 2g,) + 1.A

+ 1 m
2
,j0 .~s2

K4? +mfzB '(18 ' e, + mly,1's) +it+
f.B /)(1.0~ 1. Yo, s)+ M .,B .s

m0 e. 3 
1 
A + m,)01)0s0Im +r 1. (49

18 + 0 M 'ZB C0B + ~ C

or 2 in ~ 0 12i+13 41
2

3)

K.= bal-tO + Q4

to+ B128s 012+ 82) +~) 2

Ks t,)0138CO+'1s +i0)+ MIV0lf0gl + 1,)0 (40)

Tvhe teem neo(7

P2 .
1 

bo -1 01 0~s

296 +1,+ Ai+ AC
I. .o

yA yo+ lOAo +JASA .A



P1 1 A 4A*S

f 2  ~o+ Ac, + JACA + JC
P24 = IACA +lAA lA c 1

ati 2 3022 1

3 COA12 3 i
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OPTIMAL DESIGN AND LOCATION OF MANIPULATORS

Marco Ceccarelli

Dept. of Industrial Engineringi
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Via Zamoseb 43 .03043 CASSINO (FR). Italy
tel. +39-7764299536 fax +39-776-310609

ABSTRACT -The problem of the manipulator design is approachted. from a kinematic point of view.
through an optimization formulation. The design variables ure discussed including the locstion and the
orientation of the robot bate through tiable parameters which are congruent with the link parameters of
the mamtpulaso chat-- A manipulator global length is defined as an objective function, since it may also
take into account someK worlispace and ineroa propetie. Therefore, titable procedures fer the
optiniuzatn problem are proposed. Some further conaidlerationia on opimal design procedures are
developed by using an algebrai fernulation for the manipulator workspnce. .,lich has been deduced in
previous papiers.

The problem of the optimal design and location of manipulaturai bare been addensed in the lust decade.
with particular formuelations with respect to the opimization techniques and the robot structures.

In a pioneer paper, the minimization of maapulaler propeetios has been recognised and used in
optimize also the layout of a nmanipulater wersation. (Schieinman ano Ro.Ot. 1985).

However, the mvnpnteeo optimal design has born recognized and stated. basically. with respect to the
workspae charactisc. This is becaase the woilkspace: of a maitipulatee is one of its most isaprim
properties since nt is related to the lank are within which thie robot manipulation can be performed.

A fundamental paper on the topics can be considered that one by Yang D.C.H. and Lee T.W .(Yang
and Lee. 1984). in which the optamization problem baa been formulated through a Volume Index on
workspace and by using auccesfully a beuristic technique. developed un die communicanions field.

Snetemajor complexity and computer time consmption is in the volume calculation. it bas been
thought convenient to ndope workspace formnlationis fee siecific manipulator struactures and to developsa
stepwise aiable precedure. (Tan and Soon. 1985).

Recently, other invexagatees have approached the problem of the optimumk workspace by adapting "ad
he' formubtuas and procedures fee the used opumnmiion technique. Thus, the application of the Monte
Carlo method bus been explored to investigate its usefulness fee the problems of kinematic nynthes of
manipulators, (Rusiegar and Fardaiesh. 1990). A Sequential Quadratic: programming Technique bus been
saccesfuLly applied to a ipecific ophimization forixalani fee the thror-revolute manipulator design,
(Ceccarelli et 51.. 1992). A geomeoic, reasoning bar been also proposed to deduce opinnisaton criteria fee
woiiace volume rod dexterity. which have been then applied to design a geometrically optimum sx
manipulators bus been developed to obtain a workspace us close us possible to a prescribed our by using a
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suitable descripuon of the workspace boundary through a list of circular arcs and the application o the
Gauss Divergence Theorem for the area calculation, (Gosselin and Gutllot. 1991)

An algebraic approach has been proved to be an efficient and versanle tool in the numeric optunusa
woikspace design for ihree.revolute manipulators. (Lin and Freudenstem. 1986) On this basis. an
alteanve algebraic' formulanon for the workspace boundary of three.revolte ,,,mipnlators has been
developed by the author with analysis prpose and to investigate the ring geometry. (Ceccarelli. 1989)
The versatility of the algebraic approach has been further demonstrated by inverting the aforemenuoned
formulation in a synthesis algorithm. (Ceccarelli. 1992). Moreover, this algebraic approach has been
extended to four.revolute mtnpulators, (Ceccarelli and Vincigurr. 1992). with the aim to achieve a
general algebraic algorithm for workspace determination.
In this paper. an attempt s illustrated to formulate the design problem for mampulators by using this

algebra algorithm for the woba-pace determination. Particularly, an opti i ation formulaton is
proposed whose objective function is chosen as a global length of manipulators defined through the link
parameters and the base location. This peformace index has been proved to be significant on workspace
and inertial properties of manipulators. Furthenuie, the peculianties of the proposed formulations for the
optimization problem and the woslspace detenmtation give the possibility to design optimum
mampulators by means of a search direction technique and through a suitable worspace precision points

2. Design Paramte of Manipulatorsa

The optimal d eiin of masupulasor kinematic chains should include the optimal location of the robot base
with renspect su a fixed frame. Therefore, the design parameters can be considered the link time.
independent sizes of the chain. i.e. for rmvolute-conecild manipulatoir &,. a, and d. iml....n. and the I.
vectors b and k. which represent respectively the position and the orientation of the robot base with
respect to a fixed frame XYZ. Fig.l.

Since the main task of a manipulator is recognized in moving the end-effector and/or a grasped oject
in the space, it is suitable to achieve an optimal design and location of a robot taking into account
basically workspace characteriscs.

Moeover, also the encumbrance of the manipulator is recognized as an inportant issue since smaller
and faster machinery and robots are desiderable in modem mdustrtal applications.

Nevertheless. the two design features am not independent and a unique meaningful objecttve function
in the optmition design problem can be fomulated taking into account the folowing conaiderations.

It can be thought that the volume V ofa mampulao workspace is related to the manipulator length
L in the form

v-cL (i) i

where c is a funcuon of the chain parameters; the manipulatorlength L can be defined as

L=X (a +d ) (2)

and 0 is a constant coeff cit.L ha fact. it has been found that the workspace of revolute pairs connected
manipulators depends on its main characteristics, as shape and volume, from the link auns and
dimensions. respectively. (Ceccarelli. 1989). (Ceccarelli and Vmciguera. 1002). Therefore, it can be
useful to express the manipulator length L in the form

300



3, So S

-Fig. 1. Tie design parameters for the kinematic chain of a maipulator.

wherek, iz I .2n+1. are the link ratios of;a and d, i..a.In. with respect to a reference dimension as
for example al. Constitsently. the wodckspace volume can be computed by introducing Eq (3) in the
expression of the volume of a solid of revolnuon in the formn

V= 2st 12 fr-'dz- (4)

where r- and z- are the radial and axal reaches normalized with respect to al and 6Wjethe wortspace
boutndary. In Eq (4) at is possible to recognize a shape factor and a ratio fact both influencing the
woikapace shape. 03 

represents a scaling factor giving the size of the workspace voltrne when the
manipulator dimensionis given through als En q.(3). Front iwe above expresioes it can be observed that
the size and the shape of a manipulaor workspace are not comnpletely independent is a sease that
vasioass of link dimensions give arise to different changes of the manipulator length and the wcukspace

Neverililess. if the manipulator encumbrance incrases the workspace volume will also increase. But

somesmres the workspsce volume may vanish eves if L doesnt, since the wotspace ring volume can
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degenerate into a toroidal surface for particular values of the link paramneters, as it has been stressed for
thse workspace ring geomsetry of fthee-revolute cttais. (Ceccarelli. 19891. Futthemoore. the minimum 0(
th; wotspace volume can hr the null value, hotut it asnot related to ttte minimum encumbrance since it
depends on the size of the degenerated toroidal surface. In this last case the two-revolute manipulator wsll
be the optimal solution since itn toroidal workspace can satisfy the same number of conditions for the
workspace boundary surface as the case of three-revolute manipulators. (Ceccarelli. 1992). sod probably
at also eccurs in the case of n-eevolute manipulators

Coaseguently. it iu thought convenient to asivume as an obleouve function the "maipulator global
lenght'I which can be defined inthe form

Im = _(a + d,) (5)

where the robot base location has been included through the h vector expressed by mens of the radial a0
and aital do components. Fig.

The angles % and 0 can be cosideredasdescribing the orientation of the manipulator baseas Zb
axsith respectto Z axsand Xwth respect to Xrespctively. In addition. the base framuecan be
conveniently assumed to be parallel with the frare XIYIZ1. fixed on the rimt link of the manipulator
chain. at a starting motion configuration. Therefore. t dimensional parameters for the optimal design
problem will also include the parameters oo. 0.a and do.

The proposed formulation for the objnctive funtion can be thought meaningful alto from a dynamical

whntems iadth nra esrI of the LikIcn ecmued epctvla

r,= pi Si (a, + d1)

2dl -3ad,sC( -3a d' ,ca,

=p, -3a,di'sai 2a) +6a',d, +2d,'c'ot -2dsccu16 1-3s,%dca, -2d' scac 2a' +ba~d, +2d~s 2a,

where p, Is she mass density and Si in the emu-ssectson area.
Therefore. A represents a perfosrnance index deacribing synthetically both kinematic properties and

ine"a characteristics of a mamipulator which can be considered as fundamenital mna robot design, at least
froes a mchanmical Point of vsew.

3. An Optiouidies 7'analatioa for tb. Design Problem uf Man ipulators

By considering A at an objective function, the denign optimization problem for manipulators can, be
formulated in the form

suhject to it 7

I j .J (8)
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where Nj(= )rpeetgiven precision points, with respect to the fixed framne. to be rahda
workspace points zj. V0 is a inuntt value for a deniderable workspace volume. and the design
pseiuam 0.aotand di nh ie0.l n.

The workspace precision points can be considered inside as well as on the boundary of thre wcrtspacc
volunme. Nevertheless, they are assumed, at mnst, as limitng points for the woikspae design capability
and. conseguiently. it is usually convenient to think them as woikpuce boundary points. In this case itoi
also possible to prescribe workspace characeistic as voidsand hole, which can besfdin pactical
applicatonsa as save regions lot equipinent and personel in the automatized eaviroineni. Therefore, a
workspac description through determination of its boundtary is needed and aj as amsumed to be
determinable fromn an analytical expression of the wnikspece boundary. Once workspace boundary points
ite given, the manupulator soleiron must studiy exactly the restriction with its workspace boundary and
the sign equlisto be nesred. Oherwise. adeliiting region can be asigned withsiwhch the '
workspace may be outhined and a weak restriction can ha naed to give larger design possibilities.

The consonint on the workspace volume can he of a determinant significance. simce tho restraint my
hanve an effect on the robot size to conterbalance thu minimizaton of Iin order to ensure a no.
degenerated solution of the manipulator chain.

The herein formulation. as well as the referenced optimal design procedures proposed in the last
decade. is referred. properly speaking, to the dimensional nynthesia of mampolater chains in a seame thai
the type of a mampula tr uture cassnot he a direct result of this optimal design, hut it is better
considlered as a datum. However, this usually can be obtained by considering the number of degrees of
freedomi which is required for a ipoctie maniupulationm Usk. Nevertheless, a certain design optntal
selection can be achieved by comparing diferent manipulator structures through the resuls of the w'me

4. A Workspae Forubnla

Inorder to facdwtht eilnumerical solution ofthe dein problem (7).iatcanhbeuseful to epressthe
envolved workspace characteristics by mont, of a proper anlytical formulation.

in thu paper, the cane of throe-revolute maimprilatorn in illustrte in detail, since most of the robot
arms show this kinematic noructiare to produce the gross motion.

The rng workspace goimtry of x three-revoluie manipulator can be described by considering a
generation process of the workspace boundary througsh a stumable torts famiy envelope. This, an
algebratic formulation can hu deduced and expessed through thu radia reach ib, and the axial reach zb Of
the wirknpace boundary point with reapect to the bae frame im the form. (Ceccarelli. 1989).

r~ntr~(10)

ii which the radial distances rjand zi withrespectlto ZI wegiven. with the hyptheses Cl sOand El 00

r riz+(C,z,+D)G,+F,
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-L ±~2 D,
K1C1  C,

.,here the structural coefficients can be computed as

) Al-a 1
2
+r, +(z2id2)2

j Bl..4 1
2r2

C1=2a1 /ooj
D1 n-2al (z2+d2hCoEIlsajn

El = .2a23(d2 So2C$3 +a&2 $3) (12)
F .4 a1

2 
3 a s 2seC 3 as 3 dS coe)

KI -G 1
2 +E1

2

Q1 -L 1
2 -KI (FI

2 + PIE1
2)

and the reach distances r2 and X2 can be expressed asa

r2 -(4a3C03 +32)2 a(A3 s83 cc2+d3so2 A
2j1

(13)
Z2 -d 3 c02- a3 03 SU2 .

The angle 03 as the Joint angle of the extreme pai n the chai and it Is the kinemtic time-dependent
variable foe the workspico eimnln In fact. the werkspace bouindary can be obtained from Ealt(l I).
(13) by scaitnin 83 from 0 to 2t. (Ceccarell. 1989).

Thin wotkspace formulation can be maniupulatedl with astohests purposes to give the wcorktpace
boundaiy points througth the position votoea with respect to a fixed frame. (Ceccarelli. 1992).

(14)

r. x -L, 1:Q:1 _D
KI, C,

where. is the symbol for the duct product. I ithe vector of a woiipac bouindary point computed front

the vectorsl,. whose components are rb and zj,. by moans of the espeesin of reference change W~ R z.
bb by using the rotation mamai R and the bane position vector h = Rt bb (t represents the tranasposnceu-n

EqL(lO).(14) are useful to express analytically the constraint Eqi.(8) and (9) as explicit functions rif
the design parameters. In addition, thes equiationts are useful to calculate analytically the derivatives

which are involved in the nusmerical optimization process. Thiese derivatives cm be computed in a closed. I -
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F ! form as a functor of the design paramelmns from tie above menioned espresatona. For example, in diecase of tie al design parameter, the first detivatives can be taken die form

+. +D,)+Gi ( 77,ar2r,,E, aa, aa, aa, a aa,

az, Zi -L, Q~n aK1 1,__ _ __ __t (16

aa, C, aa, K"Ci an, KICI 2Q, aa, aa, ' a

and

___- ______ E ali ,E, ___ E,_aa, 21 a, (17)~ n2 KE1 a1

wher l and zl -are die reach coerdinaten olZj with respect to the link I frame in die constraits~
equauona(8) an ) , ,adwj are cuam components ofZ -, and tie denvstsves of die stitras

tobtiedb farther difrnitn h bv xrsin n sn h okpeagbacformation.

die nu emtyo*wrsaeo eouepi once auuar lost omlt nefficient

truhEL 1)-13). That, die volumte V can be calculated by summmS np. algebraically. die volumes
of dhim cylinders mndividaed. each one, by two boundary pointa n and nad in die form. (Ceccarell, and
Vinciguerra. 199),

in which rl11 and zljs are computed from Eqs.(l1)413) dirogh an N point disc=aOtin in 03. when

die manipulator proportiona ate given. The volume of voids will be gvoen widi a negative sinisno diat it is
subtracedwtdinEq (18).whena suitable choice ofpostvesin in a listng ofdiheN number poiotiA
adopted Moreover, die drivative of die werkrpace volamec widi reapect to die design parameters can be
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computed by differentiatintg Eq (18). For example. the derivative with respect to al can be obtained in the
for-m

in which the radial and axial reach deriavet with respect to al can be calculated for the actual bonndaty
jdiscrenzatton in 03. by using once more Eqs. (15) and (16).

1. PIrocedures for an Optimal Dein

Several opunhiton techiques can be available in solve the detign opurimzon problem formulated by
Eqs.(7).(9). Nevertheless, t peculiarities of the formulation and the proposed algebraic algoithm for the
deteriminl of the worspace, charactersilcs may give anne to particular considerations and

Weth ok p: pont j-1...J. are gtven is precision workspae boundaiy points, then the

optimal design can be better achieved by approaching the problzm throughl a titable set of algebratic,
equations ddcdfo q.(1 r(4.Ti rcdr a edvlpdwe h rcso on
requirements ace thought to be cucial and of prior importance or so severe that the optimiationi problem
may not have solution. In this ca.EL a ewitnaualt qain i a suitable procedure
using the woekcapace fornmult of EqL(14) can be developed so solve the design And location problem of

manipdalom.In partiula. once W11~4)a amsl e neicaly togi.t the structural coefficients and
the base location vectcen. then the dineiesooal phusietcA of the chat,%cart be obtained algebraically froms
the definition Eqs.(12). (CeccareLl IM9). Merice an Optimall solution. antoag all the obtainable fail
designs. can be achieved by chewing that one which hial the minimum global lengfth. In thin cane, tideed.

the onsrait (9 ontheworspac voumewaynot e wSaisfied, and particular care mast be token on its
significance and requiremient. since the workspae heuduz points already impose. practically. a certain
workspaice volumne.

When the design requirements are given to obsin a workspace within a prescribed working area
through limttions on the reach poanibilines. then a proper optimiation problem with Eqa (71.19) can be
sol'ved. EqL(10)419) can be again aned with great eamptisonal efficitincy in a mutable procedure.
within a numerical neareh direction oipesmerstion tehique. for the optias design of manipulators la

ig.2 a flowchart for the oWimma designt of ninepltasors is illustrated by soemag the importance and the
usefulnm of time proposed algebraic formulation for the workspac evaluation. In addition, the algorithm
his been developed so that a control on the iterative solutit obtained throuh silable convergence
parameters for the obtained values of the ebjective fuction. thne workspsixe precision poits and the
workspace volume. By assuming greater or smaller valusin of these comtvergessce partinetmrin opoimal
design can be adjusted to a practicall design mna seane of speeding up the numerical process by riasig or
forcing. respectively. the design reuaielmets,

Ans rxasmple in illustrated in R8g3. 7ie opestatuin is started with an inita! .-. apulater whose
workipace, is quite far to satisfy the demign requirements which are indicated with black circles. It
particulair, the small black circles inanme pounts to be created or overposaul by the workspace boundary
and the greater the limit of a prescribed working area on radial reach. 7ie ground has been assumed on
zero axial coorvdinate so that the workspace is required to be outlined no below zb = 0. with a workspace
volumne near an ponsile so 1000 a13 In thia cane, the robot bane has been considered given to tress the
efficiency of the algebraic formulnona. Mie reilts of the differesnt iteraios are shown by a fine line, and
the finail resalt by a heavier line. It can be noted that although the starsing mampulator workspace, does

ot satisy anyonof the design requirements. neveielesa the algorithm reaches a feasible solution wteb
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CONSTRADITS
Eq.(5S

DZ31VA=IV!S
4./wlZq.Ct5)
d5 d1  Zq.(I65
dnd z q.(t?5

dV/dat i Zq.(Io)

..

ye.

no V .~8e

I j

FS.A design procedure schlsne. through an algebraic formulaion of the workspace boundary. for bte
optimitioon iitibern apphed to robotic manipulators. in which qk is the design parameter veor
at steP k, tL . ex and tV are the numerical precision factors with respect to the design indices 4 f
nd V: &and Ok are the search direcion vector and the scalar step in an optimization numerical
Process
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few iterasions and it optumizen the workrspacze with a manipulator length of 11 89 aj and a volume of

I000.34 aj
3

iiI

Fig.3. An example of optimal design evolution of three-ievolete manipulator workspace.

The proposed algorit set can be extended to n-involute maipulator chains with no greal effins by
using an extension of Lbe fornulasion of Eqs (g)-10). As an explanatory example can be illustratedl tie
case of four-revolute mamiptlbtors; by using the wodrspace evaluation forulation proposed in Cccareli
and Vinciguera 1992). In thit case. in fact, a generalization of the workspace formulation can be
adldcedb oinsideri thae wosace bondary sointiaf a talee evelop maiguladir canpw weeiinam ah
tors when tie irm two joints in the chais m re roed. Therefore, a torus family can be obtained fromt
dedce by oinsid eri ale boundary poithat a staleeeloe aplaorhca worae tea
wosirapace boundary of fur-itvlute manipultors. (Cecearelli and Vinciguerra. 1992). through yet die
expression of Eqs (11). in which further structural, coefficients are considered in the fonts

E i+ Si
Fl i2a1

2

0 2 +~ 2 c s1  
(20)

K1i.E1
2 (;1

2

and Q 1 L I -K1 (F2+BI E,
2 )

(CxZt +D2)E2G2 -G2E,)+E 2,-F 2E;+G.E2(, ;+~
R2 Ez + -2zz 2

S2  
2

(Z' + d,)Zt2

= ('lt C,
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v here ri. z2 and the involved coefficiet sarenow expressed by meanssof Eqs (1l)(13) by an increase of
one for all the pedaces In this way. it is still possible to calculate the wotispiace volume and its dertvative
through Eqs(18) and (19). the fortmulation of Eqs.(14) is yet descebing the woirkspace boundary points
with respect to a fixed framne, and the derivatives of the position vecuirs of workispace points can be
espress as the Eqs (15)-(17). Therefore, the optimal design procedure of the flowchiart in Fig.2 can be
applied with small algebraic adjustments only in the workspace algorithm.

6. Conclusion

In dna paper, the design problem of manipulators is formulated as an optiiation problem by using a
proper algebraic formsulation for the workspace boundarty. This algebraic approach has hors farther
developed to facitate the numerical Solution of an Optimal design by proposing suitable procedures and
by deductn$ a straightforward algorithm for the calculaion of the workspace volume

Fsrthermore. the position and the orientation of the robot base with respect t3 a fined framne have bees
exprensed is the fotrn of link parameteis so that a manipulator global length, defined as a sum of all these
dimensional parameters. bas been ssned as an objecuve function. Than, a general formulation does not
differ from the particular case with assigned location of the robot base. In addinion. the proposed
performsance index is meaningful for optimization also from a mechanical point of view, since it has been
shown to be significant for both workspace and mnernal properties of mianipulator chains

Some aspects of the numerical solving process are discussed refeorig to the three-revolte
manipulators. Neventheless. the algorithins can be "utended. in fanire developments, to it-revolute
manipnlator chains by using an extension of the workspace formulation, which is uinderway at the
Department of Industrial Engineering at University of Cassino. However, the basic concept has bees
tynthetically illustrated in this paper by examining the fornulation for the optimal design of a four.
revolute mantipulater.
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THEORETICAL MODELING. NONLLNEAR CONTROL AND SENSITIVITY ANALYSIS

OF A SPATIAL NIULTI.AXIS TEST FACILITY BASED ON COMPUTER ALGEBRA

K -D Leimbach. H Hahn

Department of Mechanical Engineering (FB 15), University of Kassel
3500 Kassel. Mdnchebergstrafe 7.
Germany

ABSTRACT. This papez presents a nonlinear control concept of a spatial multi-axs servo-
hydraulic test facility together with a parameter sensiivity analysis of the closed loop system

Based on nonlinear model equations including the servohydraulic actuator dynamics and the test
table and payload mechanics a global nonlinez: diffeomorphism is derived which maps the model
equations into nonlinear canonical form Using symbolic languages, a nonlinear control law is ae.
veloped and calculated based on exact lneanzatoa techniques The efficiency of this control

concept with respect to tracking -ad decoupling behaviour of tho test facility is demonstrated by
computer simulations, taking into account variatiors, of mechan.al and hydraulic plant

parameters. The applicability of this control approach to test facilities from industinal practice is
discussed in detail.

1. Introduction

High quality multi-axs servoaydraalic test facilities are widely used for testing of critical
components of industrial equipment and of future spacecraft (Hahn. 1986) Theoretical
investigations of multi axts test facility control concepts are usually based on simplified linear

model equations (Hahn. 1986, 1992) However, the exact model equations o such systems are
highly nonlinear and strongly coupled This paper provides a nonlinear control concept for a
spatial multi-axis servohydraulic test facility (cf. I) based on exact input state lineanzation of the
control plant equations (Isidon, 1989. Slotine. 1991: Schwarz, 1991) Based on the nonlinear
control plant equations of Section 2 including the mechanical equations of motion of the test
table and payload and the servohydraulic actuator models, a nonlinear control concept is

developed in Setion 3. The extreme lengthy analytical expressions occurring is the design steps
-test of exact linearitation conditions.

construction of a suitable diffeomorphism,
* mapping on the control plant equations ot motion to nonlinear normal form and
* calculation of the nonlinear controllers

have been reliably derived and handled by systematically using symholic languages The

sensitivity of the test facity behaviour with respect to critical (mechtaral and hydrulic) plant
parameters is discussed in Section 4 The practical use oi this approach for a coordinated control

of spatial motions of test facilities is discussed in Section 5
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2. Nonlinear Model Equations of the Plant Mechanics and Hydraulics

The test facility considered includes the following components (cf. 1)

-a rigid six degree of freedom test table with a rigidly attached rigid payload
*six servohydraulic actuators and
*an integrated control system

Figure 1: Computer drawing cf a muliti-axts test facility driven by sin actuators

2.1 TEST TABLE AND PAYLOAD MECHANICS

The nonlinear modei equations of the test facility mechanics are

MDi.2+(t J.I(X,) x2... (X 1. 2).qC(X.)=J.L(x) Ak p I

(cf. 2) where M(x) is the inertia mains of the test facility

rC', =j .yc'p .z0', 1r is the vector from a reference point P to the center of gravity C
represnted in local framte L, mo is ihe test facility maass;J is the inertia tensor of the test facility,
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.0 Pyl/
Figre2 Muiaxi tst acliy wshsixsevohdrulc, atatr (dfntin. o ecos n

f-1uft-,)

~s ,~ reteBytanes( snq)a sn)a 5 =i(),c csq, =cse.

aige 2 d i-aa aties fsaciltwtt dmi n o effauicientuas dfin tn of shepi tors and

respectively. x, is the position and orientation vector of the spatial test facility represented in
inettial frame R; a2 and x2 are the velocity and acceleration vectors, respectively,

V1 44.4. A0 x2  I4 . RPL ,qL , r T o
6 , (4)

where she relation among variahles p4. qL, rL and (p , 0 , v, is defined in (14) and (15)
T1he nonlinear vector o(xs,xn) of she centifogal forces and of the gyroscopic terms is defined in
(5),

K ~ ~ P I'l Y&~T§ (P +q")t it, C ' Yt

qGxo) is she nonlincar vector of graviu-ional force and torque's
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(0, 0, Mg),1

J 0x)s 0 *P, - c2c- , S3 +s SZC 3 , 
5 - S' 3  (6)i) Z p 0 -XLP _ CS C:C3 c .3 SIC3 + C5S 5  0

Y CP L 0 S2 , -sic: CC2  -0 gJ

and P=[PI ,,PPn p.Ps, P6]r o (7)

is the vector of the actuator pressure differences. The nonlinear transformation matrices 41 (x,)
and Jxl(xi) map the test table forces and velocities from joint fixed frames Ks to test table degrees
of freedom representation in frame L and vice versa, where

Prx AI N -Px AXIR A
R
L F.L

Pry A"R -Pry AK2A AR Fp, p

Pry.AKR -Pry A SR A 1
,  

R and (
8
)

J.I(xP) Prz AK4R -Pr: A"
' 

A' PLi

Pr AKSR Prz AKSR ARL Fp5

Prz AK S -Prz AK
'
N AP. FAp

A [L C5$5cs - -23 -- $2 (9)

= iS+StC3 C1C5 -5IOaSs .5IC 2 ()

$133 -C1$ZC3, sic$+C42"21, CIC1

is the orientation matix of the test facility fixed frame L with respect to the netial frame R The
projection vectors are defined as Prx = [i0,01, Pry = [o, ,01. , Pr: = [0,0,11,
rept (I = 1. .6) is the vector from reference point P to the test table fixed actuator joint PI,
where

r P~xlii, y#d," r 0 "Z p y.1

l L 1 ,,,] , , 0 -4,, . (. 1, 6) (10)
YP' Xp 0

The actuator orientation matrices ANA are described exemplary by matrix A
K

'Ii associated to the
x-actuator (cf 3 and (II)).

KIN cos,,cosp, $ni , -n y, sinfl]
A

'
iA = y-yio, l, ,os n. yi .,sinfA (I)

L sin1  , 0 , cosfP,
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A, b

--- ... r -- -- - - - [ . sx
a

rPIQ nerntal fixed
," . .- -. l- --- actuatorpmt Q,

- actuator length rP o
body hxed toint P, of the actuator

Figure 3 Onentaon of the joint fixed frame K1 of the x-actuator

where (cf 3)
C, Al

A,/ +C,' -V'AA +C,

&- .osyi _ 
(12)

A Xp
R +

C, C3 
L pP-C2'S3 YPP+$2 Z PXo t

B =y+(C¢ 53 +S1 . C) XIP+(CI C3-'[". $) y 1PtI-SI C¢ ZP4I,-yQ , (13)

C, =4R+(Si S3_Ct $2 C3) XL+a.C.~ s3) +C C2 p LC1 c2

an R
ad QO .o1 oj 1 the vector from tue origin 0 of inertial frame R to the origin Qj

of actuator fixed frame K1 The transformaution of the positton and orientation vector x, to the
velocity vector 02 (comp (4)) is defined by the relation

dx, = (X,) X2 (14)
di

which includes the nonlinear Poisson equations. where

0 'O,O, 0 , 0 ,0

t2  0 ,1,0 , 0 0 .0

T(x,) _S t ,,. 0 0 .0 e
6

,( =au(O)) (5
t4  0,0,0, c31c2, -s 3/c 2, 0

, 0,0,0, S, c3.0

16 0,0,0,-c3 I, S3 ,
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2.2 SERVOHYDRAULIC ACTUATORS

The servohydraulte actuators are modeled by the equations

p =CH' [Q, Kv aQp p- Ak JA(' 1) '2j 6 fil' (16)

where u is the Nector of servovalve command inputs

U=("1U2,U a~ U4,"5s-i6 ]' Go (17)

ad C11.- dagCH1,. CH6), Qp.=dtag(Q
0.'. 'Q0) (18)

Q, -dug(Q. 1. Q.6) .Kv -diag(Kv, . Kv6) (19)

are the diagonal matrices of the actuator hydraulic .apacttes servovalve pressure coefficients,
servuvalve dtsplacement coefficients aod servovalve guts factors, respecrisely The servovalve
mechanics model is onutted in thts appruach

2.3 NONLINEAR STATE SPACE REPRESENTATION OF THE PLANT

The combtned Equations (1) and (16) may be written in nonlinear stars space forri

where l
t
',ai2620

uX~1  eIR", B-[b1.b2. b3.b4,.b5,b6 "- "
6

(

Lo] 01 6]eRuj (1

0 122 . 0. 0 0,0

0, 0 b33 , 0,0.0
0 ,0 .0 b,. 0, 0 =C8, Q, K, e01Y6 62

0 0 0 ,0 b55 0

0 00000 b.b

riifj=cH' Q, p-CH' AK hilxi) x2
1=111 T(x,) x2  (23) i

Afi a(X1 ,o2)+iSX0~ P

a(x,x) 3ft(xi) {.4,T(xt) DA. Jxj(xi) x2 -n(x,.x,)-oa) e 0l, (24)
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ClearlN, f(x) and B in (20) are smooth vector fields

3. Nonli ear Controller Design

In all known control theoretical investigations of multi-axis test facilities from industrial practice
the nonlinsar equations of motion am inearized locally (compare Skelton, 1988. Hahn. 1986).
The contro) concept investigated in this paper is based on exact linearization of the nonlinear
control plant using nonlinear feedback compensation controllers and a linear state feedback
controller. The design steps to be performed may be sutratiansed as follows-

- Test of exact linearization conditions
* Construction of a nonlinear state transformation (diffeomorphism)
- Mapping of nonlinear control plant equations into nonlinear normal form
- Nonlinear feedback controller design

- feedback c7.npensatioa of plant nonlineanities (exact lineartzation)
* pole placement of the exact linearized control plant via linear state feedback

(stabilisation).

3.1 TEST OF EXACT LINEARIZATION CONDITIONS

The nonlinear control plant (20) is for rank BI=6 according to a Lemma of Isidon exactly
inearizAble , if and only if smooth formal output functions

y,=h,(x)h(p,.x, ,x2) e R , (il -1. . 6) (26)

exist on U(xo)which satisfy the following conditions (Isidon. 1989: Schwarz 1991, Slotine 1991)

-1 Lb, LIh, x) -0 (27)
for I g i.j 5 6. for k < r - I and for all x of a neighbourhood U(x0 ) of xo.

Lt[,~- h /ti(x)a''h()1
-2' E(x)=f| ,is non-singular at x x0 and (26,

La L',' h6(a). Ls* , h L(X)j

-3 n (29)

These relations define the vector relative degree (r, r2 r , r, . r6) of the system (20)

together with (26), where Lh 1(x) are Lie derivatives of h(x) w th respect to f The general
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formal output functions (26) have been specialised in three steps

1 Choice of h(p.x1 ,x2) independent of p implies

L,,L eh,(x,.x-)=Vh(x) b, .0 t.t =l, .6 and r, ZI (i=1, ,6) (30)

-2 Choice of h(xlx 2) independent of x2 implies

bL5Lhk(x 1)KO. .. j=l, .6 and r, 2 (1=l. .6) (31)

-3. If h(x1) is selected as
ysh(x).=x , (32)

condition 6
LLfh(xi

) * O  
=l, .6 implies r,=3 (=l, .6) andIr=18 . (33)

where
- I e4h(xi)=f2t ,(xl)x., 1. .. 6 (34)

- 2. ef/h,(x,) = ,(x,.x2) T(xj) x2 +t,(xj).f, . 1 ,. 6 (35)

where in agreement with (23)

r!,']
IW a,(x,,.x 2)+/(x,) p e>, . (36)

0 O.0 .0.0. 0 , 0

F 0 1.010 .0. 0 . 0
0 .0,0. 0 . 0

qO. 0 0 L 
,ILL qL 

1 , (7
.0 .0 .0 0 Ci PI3L~ , r,~ c,o 0 c

and (30)

h ,o(x) .L h

eP . , Lb L hJ i(
t 

I L
t

t _ () Lb , ()

Then using (25) yields

, E(x) T(x,) A T(x) 0 (0 ) p T(xi) -(xi) ..(i) AK B1  (39)
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Ma"trix T (compare (15)) is regular for values of 0*in/2+rt ir (n=0 1. )The inerna matrix
Mlxi) is always regular (cotmpare (2)) The diagonal matrices Ak and B, are regular. too. tor a

test facility driven by six actuators (compare (3) and (25)) Then E(x) is regular (excluding the
* critical valoes of 0) if and only if J,~(xi) is a regular matrix. There enist pathological actuator

attachiment configurations where .i(xi) may become locally singular (compare Figure 4)

Those configurations and isolated locations excluded JI(x,) is regular and

det (J,,(x.))w0 (40)

Then E~x) is regular. too. and the control plant (20) is exactly linearizable by state feedlack

3.2 CONSTRUCTION OF THE NONLINEAR STATE TRANSFORMATION

Based on the prev~ous design steps. the nonlinear diffeomorphism which maps (20) into nonlinear

normal form is defined by the relation

t2 Zi3g"I

Where (using (32). (34) and (35)) (41)

Z2 
0

2(1-s Ta x 2  R.( . 6)

I~
0
(~ T'f. + 3 T~x2 +T a(xl,xt)+T (x(a) pj

and 'P is a smooth vector field

Note: (Physical Interpretation of usonnal form state vector z)

Taking into account (!5) the normal form state vector Z[T. , 1T 6 flit

has the following pleasant physical interpretation:

a1 IS identical to she lest sable position and onientation vector

-z2 is identical to the lest table velacity and angular velocity vector x, a t~) x, and

Z3 oIS identical to the tess table acceleration and angular acceleration vector

(compare (41))

Due 10 (40) the smooth inverse vector freld 4P- In) exists and is described by the expression
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Figure 4 Singular cases of ihe m.appm (Xing u l) for small values uf xI
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P ,(,> T-', :- t -T (,"'} ,z2)1
X, (P',(,) LR (42)

X 2  T " ]2

D3.3 ERIVATION OF NORMAL FORM CONTROL PLANT EQUATIONS

tUsing the nonlinear coordinate transformation (41) and its time derivative

doZ=T x.x (43)
dx

the nonlinear control plant equations (20) are mapped to nonlinear normal form

Z, Z2

ZZ n Z3 (44)

43=a(Z1 Z2,43) + N-1) US where

'P3 = T(x,,x 2 ) T(x1 ) x2 +T(x,) a (xi, x2 )+T(xl) /(xi) p

a(zl.z2.z3) [&.2x+.,.(x) .f(x) or (45a)

a-1,.:,.):- [M-(, '(,)At AW+

• ,[X ,X,,. T(xi) x2 +T(xi) a(xi, x)+T(xi) 1(x,) p] f2(x)+ (45b)

! ~T fx.2 ,(X,, ,+,(xi, aI .21 ,3(),]..(,
and

B, T(,i ) A- (Zi) J,' (.,) A, B. (45c)

3.4 NONLINEAR CONTROLLER DESIGN

After having den',ed the nonlinear normal form control plant equations the controller design is
straight forward and includes the following standard destgn steps (compare Isodon. 1989. Slotine,
1991, Schwarz 1991)

- feedback compensation of the plant nonhneaities (exact linearization) and
- pole and zero placement of the overall control loop via linear state feedback (stabilisation

and transient shaping)
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Figure 5 Block diagram of the overall control system,

Implementation of a nonlinear feedback control law

U =0'(11) [V - a(Z1 -,2r- s) 1 eR 6 (46)

according to Figure 5 yields the system equations among input vector v and system sratez

ZI-Z 1 2'3 3-V (47)

Thre poles and zeros of this (degonerate) system are arbitrarily placed by the linear state teedback
law (48) including a third order time derivative w, of the ineut vector w, (for zero placement and

transient shaping).

v = -K (z - iv) E (48)

The resulting .verall control (cf. 5) system is represented by tflr equations

Zi = Z2 2  a~ Z3 - 3 -wI sK (z-v)0 (49)

where

K (K, ,K, ,K31 ,K, --d,.g (k., k 2 .k,3,, 1 .k, 5 , k6) 1~ 6

and
,v.[~ wr2 wtsj (cottuand input). jz4 z' z4r(stueO vector)

AA 9 ,A o
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4. Computer Simulation Results

The nonlinear control system of Figure 5 with nonlinear control plant (20) and with nonlinear

controller (46) has been investigated in a computer simulation using standard transient test signals
wI for vibration testing of space structures (as shown in Figures 6a. 7a. 8a and 9a) together with
their first. second and third time derivatives as command input vector w A complete and ideal
nonlinear control law (46) will exactly reproduce those input signals as output vector of the
control loop In idustal prcti c not all plant parameters are known exactly As a coosequence,
the plant parameter values used in the control law may deviate from the parameter values realised
in the plant The influence of those parametric discrepancies between control plant and
controllers ts investigated subsequently by computer simulations Each of the following variations
of controller parameters :s counted with respect to a set of nominal values of controller
parameters which are identical to the plant parameters. Variations of the hydraulic capacity CH
which stand for variations of the oil conpressbilhty due to temperature vanations and due to oil
contamination's caused by air bubbles are shown in Figure 6 The tracking behaviour is only
influenced slightly by vananos of CH of 50 % (cf. 6b and 6c) Unrealistic variations of C1 by
a factor four or more modify the tracking bcl'aviour significantly according to Figu,-e 6d The
coupling of the mechanical degrees of freedom is insensitive with respect to those 3arameter
vantations. In Figures 7b and 7c the .ommon mass m of the test table and payload is modified
by a factor 1/2 and 2. respectively This drastic mass variation again does not severely influence
both, the tracking and the coupling behaviour of hte ystem Only unrealistic variations of m by

factor four or more have significant influence on the system behaviour (cf 7d) Variations of
all moments and products o.- Inertia of the some order have no significant effect on the s5 stem
behaviour. These results are omitted here. Variations of the common center of gravity of the test

facility and payload are shown in Figure 8. Simultaneous huge modifications of all components
of the vector rcp from reference point P to the center of gravity C (for fixed P ) by factors
1/2 and 2 are shown in Figures gb and 8c. They don't affect the tracking behaviour , id only
provide slight couplings among the test table degrees of freedom Only unrealistic variations of
rcp by a factor four or more show significant modifications of the coupling behaviour of the
system (cf. fd). The nominal plant model equations (20) did not include nonlinear friction forces
due to dry friction in the hydraulic actuators and in the joints attached to thote. As a consequence
those friction forces have not been taken into account in the nonlinear control law design Figure
9 shows simulation results including nonlinear friction forces of different absolute values in the
plant model. Friction forces FR smaller than 3 KN don't prov:r: unwanted influences upon the
system behaviour (cf 9a) Friction forces of the order of FR = 5 KN don't affect the tracking
behaviour. They introduce small coupling effects of some test facility degrees of freedom (cf
9b) Friction forces of the order of FR . 10 KN introduce slight modifications of tl's tracking
behaviour and spontaneously occurring coupling of some degrees of freedom. Hugh friction
forces of the order of FR = 20 KN which are unrealistic in the applications considered severely
deteriorate both, the tracking and the decoupling behaviour of the test facility. Those extreme
friction forces are avoided by using actuators with hydrostatic bearings in the test facility
considered The above numerical sensitivity analysis of the contiol loop considered demonst'ates
that the exact linearication pproach is much less sensitive to plant parameter dria.ions and to
controller parameter variations than often predicted As a consequence v,ous pocesses and
machines from industrial practice can be efficiently controlled by uming this anproaca
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Discussion of Possible Practical Limitations of the Control Concept

in many nonlinear control applications trom industrial practice, exact linearization techniques is

of minor importance due to the following limitations

(I) the theoretical and numencal amount of work
- to test the exact linearizatton conditions,
- to calculate both, a suitable dtffeomorphtsm and its inverse and
- to calculate the normal form control plant equations and the nonlinear controllers

is extreme cumbersome and expensive and is often beyond the limits of practical
feasibility,

- (2) the plant model equations are not accurately known,
( 13) the plant model data are not exactly known,

. (4) the full state vector is not available for feedback purposes,

(5) the time derivatives of the command input signals are not available up to a
sufficiently high order,

S(6) the lengthy and complex control laws cannot implemented as on-line
algorithms.

In the previously discussed control of a spatal multi-axis servohydraulic test facility these
pacical liTutations have been overcome as follows

(I) the test of exact linearinzation conditions and the calculation of a suitable
diffcomorphism, of its extreme lengthy inverse, of the nonlinear normal
form control plant representation and of the cc.,troller algorthms have

been done by systematically using symbolic languages (some of these
formal expressions have typewritten length of several thousand DIN A4
pages, compare Table 1, column 1),

- (2) the plant model equations (including the test table and payload mechanics
and the actuator hydmulics) are well known with sufficient accuracy,

)3) the associated model data are well known both. from numerical calculations
and from laboratory expertments: in addition, simulation results prove that
the control concept proposed is comparatively insensitive with respect to
vanatons of relevant plant parameters The only essential model data that
are not well known in the above application are dry friction forces is the
actuators They may be drastically reduced or even avoided by using
actuators with hydrostatic bearings;

. (4) all 18 coordinates of the state "ctor z of the normal form control plant
equations (including test table positions and orientations and the associated
velocitie$ and accelerations) are available as sensor outputs:

- (5) the command input vector w I as well as its first, second and third
derivatives w2 , w3 and v3  are available as test signals before starting a
test experiment.

- (6) the extreme lengthy and time consumng control algorithms have been

drastically reduced by suitable substitutions of repetitively occurring

intenal expressions(compar Table 1, column 2), they can be
implemented as real time aigonthms in transputers or signal processors
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number or pages or number of pages of, symbohc expression implemented expression

co 9614 43

1630 63

c -lj 1570 55

Table I. Length of symbolic expressions and implemenied algorithms of the nonlinear
control laws (counted in typewnitten DIN A4 pages) computed by using the
symbolic language MACSYMA
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Figure 6 Time histories of the test table degrees of freedom obtained from computer simulations

including parameter variations of the actuator hydraulic capacities CH

(a) Nornunat value of CH
(b) Variation of CH by a factor of 05

(c) Vanation of C1, L a factor of 2 0

(d) Variation of CH by a factor of 4 0
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Figure 7 Time histories of the test table degrees of freedom obtained from computer simulaitons

including parameter variations of the common mass m of test table and payload

(a) Nominal value of m

(b) Vanation of m by a factor of 0.5

(c) Variation of m by a factor of 2 0

(d) Variation of n by a factor of 4 0
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Figure 8 Time histories of the test table degrees of freedom obtained from computer stmulations

including parameter varatons of the common center of gravity

(a) Nominal value of rCp

(b) Vaiation of rCp by a factor of 0 5

(c) Variation of rcp by a factor of 2 0

(d) Vanation of rcp by a factor of 4 0
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(3) (b) (c (d)

Figure 9 Time: histories of the test table degrees of freedom obtained from computer simolatioo$

,, including dry friction forces within the smrohydrauhic actuators and the joints

(a) Actuator's and joints without friction

(b) Ficton force of FR = 5 KN
(a) Friction force of FR = KN

(d) Unrealistic high fnction force of FR 20 KN
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IDENTIFICATION OF MINIMUM SET PARAMETERS OF FLEXIBLE
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ABSTRACT

The object of this paper is to present new results about the modelling and identification of
flexible robots. The existence of a minimum ret of parameters is proved by the use of a
symbolic method. The determinatton of this nmmum set increases the robustness of the
identification process.
The identificauon model based on the energy theorem is shown to be linear in terms of a
set of physical parameters called standard parameters. A necessary and sufficient condition
which ensures the nmmaliy of the standard parameters is given. Thins condition depends
on eigen functions if the model derives from an assumed modes method and on shape
functions if the model derives from a finite elements method.
In the case of robots whose links are all flexible, we demonstrate that the only possible
regroupings of parameters are obtained with parameters belonging to the same link.

1. Introduction

The active control of robot flexibilities requires considerable effort in terms of

modelling and identification. Compared with rigid robots, the degree of difficulty in the
case of flexible robots is increased because of the existence of non linear interactions
between the large ngid displacements and flexible components of the elastic deformatons.
We can find in [1] and (2] a summary of diffexentnmethods The main differences are:

the choice of parameters - in particular, the choice of reference frames for the
description of elastic displacements-,

- the choice of the approximation of the deflection - the most common approximate
description are based on assumed modes method or finite elements method-,

- the physical principle used to obtain the dynamic model - virtual work principle or
Lagrange's equations-,

- the way these equations are calculated -the use of a symbolic or a numerical method-,
- the degree of approximation -development order of the model, order of magnitude of

the elastic displacements...-.
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The control of such structures has been extensively studied. The main approaches are
methods of non exciting trajectones [3], adaptauve control (4], control using a knowledge
model. In this last case, we can find singular perturbation methods [5], LQR methods.! based on an approximated lnmzd model [6] or non linear dcoupling methods (7].

Our present work is based on the knowledge model approach. We have notsced in
previous works [8, 9] that control laws are prone to errors made in the evaluation of the
parameters which describe the model. It is therefore necessary to find a compromise
between the complexity of the model and its nime computation. A first stage copsists in a
structural reduction of the model -the choice of the number of finite elements or esgen
functons describing the flexabilities of the robot determines its dynamical performances
A second stage allows us to find the best parameters - and to identify them - in order to
approximate the real behaviour of the robot -ever if the chosen model is not accurate- and
to make its computation possible.

The identification of the parameters of rigid robots has been studied in [10,...,14) On
the one hand. identification ensures the on-hne determination of the parameters of the robot
for control purpose. On the other hand, the deter-mination of the set of minimum
parameters of robots reduces the computational cost of dynamc model and increases the
robustness of the identification process.

In the case of flexible robots, several identification schemes have been studied. Some
on-line identification schemes are based on input-output ARMA representations (15. 16,
17]. Another approach consists in elaborating a mmmal identification model based on a
knowledge .aodel of the robot and in applyitrl a least-squares method. There are two inds
of muumal identification model : the ftrst consists in applying the theorem of energy for the
robot, the second comes from the dynamic model. More details on these two models
applied in the case of one or two link-planar robots can be found in (18] and (19]. A set of
standard parameters has been proposed. Its mnimality has been demonstrated using a
numerical rank analysts of the observation matrix which is constructed with a random
sequence of points.

In this paper we offer a new direct formal analysis of the minamahity of the standard
parameters. The paper is organized as follows :,

- The first part deals with the modelling of the flexible robots and the determination of a
standard set of parameters The identification model is deduced from a physical
equating of the theorem of energy. We demonstrate that the identification model can be
wite, n a linear form with respect to the standard set of parameters.

- A second part is devoted to the problem of the minimality of the standard set of
parameters. We give a necessary and sufficient conditins which is related to the choice
of the eigen (or shape) fancuns of the (asretization.

2. Modelling Of Flexible Robots

We study thereafter a single chain open-loop robot structure. The elastic deformations of
each hnk with respect to its ngid configuration are supposed to be small.
The elastic motions of each link are referred to the position of the undeformed
corresponding link.

2.1. DESCRIPTON OF THE ROBOT

The different frames used to define the model of the flexible robot are described on
figure 1.
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- C(O) is the rigid configuration of link i,
- C, is the deformed configuration of link i,
L i is the center of the joint between link i and link i+l,
R = (l ,XIYI,ZJ is a frame attached to link C1,

R+. =(+. ,., is.fae aale0ofaeR.adcnrdoRL1+1 =(L.+I, Xl',Y,',Z,+IY is a transformed frame from ,(*1 after the elasuc

deformation of C,(°).
R,+l (L,+I,X,+t,Y,+I,Zl+l) is a transformed frame from RL,+ in the
transformation function of the joint variable rj.i+1.

(0)
RLRI

Cj Li~i
Li

-figure h Defliiion of link frames -

2.2. TRANSFORMATION MATRICES

All the transformations are represented with the homogeneous transformation matrices
The global transformation matx fiom Rl to Ri+1 is defined as follows:(0)

RiTRi+IARTRL1+j E(Li+l) RLn iTRi+I I

where
(0) (0)R.TRL,+I is a given constant transformation from R, to Rlb+ : translation of vector

(0)
LILI+.

- E(IsI) - A+TRL , t is the elastic transformation mat= from RL+41 to RL+ ,. Its
components are a function of the elastic displacemr-r and rotation of Lq+i of C1+1 with

respect to ir rigid configuration L;I.
" RLTRi+l Is the transformation matrix from RLJ+I to RIl. It's a function of the

rigid joint variable qRi+l.

2.3. DEFINITION OF THE ELASTIC DEFORMATIONS

We now consider that each link is modelized with a deformable beam. Moreover, we
suppose that the elastic displacement field of each beam verifies Euler-Bernoulli's
hypothesis.
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Let b a pont off the cross-ecton of the beami which is perpendicular to the ncutral
Pxs be the pon fthe neutral axis which intersects the samte cross section -Figure

2Thposionf any pointM beonging to lin C, - with respect to frame R, is obtained
by supeposing the elastic displacement due to the lik flexibility (Ue(M)) to the rigid

position of M tied to (lUr(M)).

-figure 2 :descriptons of the link miodel-

RsLiM R'Ur(M) + R'e(M) (2)
where:
* RIU,.(M) = jx, y, ziT
*it) . RUt(p) + R,@,(P) A RjpM (3)
-RpM _ (0. y, T

The elastic displacement vector of the ncutral axsa, rR,Ut(p)TR.e(p)T]T, can be
defined with respect to the modal or nodal coordinates depending on the discrenzation
modal expansion or finite elements method.
Ifs aiodal expansion method is used, the expression of the elastic displacement vector of
the neutral axis is given as follows:

I RUO(p) I f

with:
' Jj(x) [0 1('N), 4i IY(it),'1 o l(it), 0 x(t)' 41,jy(x)' (I)J65(x)IT is the eigen functions

vector.

Ifsa finite elemest method is used. the expression of the elastic displactement vector of the
neuiral axi is given as follows:

L RUp) J- NI(x) ,Uel (5)
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where:
- RsU~i Is the (I 2x 1) vector of nodal coordinates

RU = (ux11 t. .,01 u uyl. O'IT

-NI(x) is the (6x12) shape functions matri.

followscse w can also wre the elastic displacement vector of the neutral axis as

Thilos e omalw st elwihtefnt lmnsmde swl swt h oa

[R U%(p) ] = X j) qR i)= Ue ( q() (7)

- i R .5() 12 tl, fort) 1- 1,)n
NI~e() -NI'~e(x), e(x), N1 (t21

N 'It) (x) (xN, 8(x), ( e) ad8()aeteeasiTipaeet n
Tios aor s abcis to along i the ieam eet.oela ela wt h oa

expasio model.)

Nwer te left thpergenepral fomai n * erltv otetasainadrtio em

mt~ ) is the3 ectr m al oristh number cofdinast dres, o reo o iii

T,(x)is amatri (6 33i)

LepTUTjj~) jx.UW



F-9

'(X ~1 x ~ (X) (9)

teEuler-Bernoulli hypothesis allows us to write that 01(x) = u (x),~ and

T6 1=(X) (X

2.4. GEOMETRICAL AND KINEMATIC MODELS

The position in Ro of any point M of C. is given by the following expression

ROOM ]T.re'[ RlLiM]

with:

*RfRj~j is the homogeneous transformation matrix from Rj so ,.

The kinemnatic model is derived from the geometrical model by differentiating equation
(11).

7{OM] 1R' R Rj ReTRi d-L, (12)

The calculation of dROTR, is performed by using the differential homogeneous
transformations, The general expression of dROTRi is given in [2].

3. Energy Expression And Identification Model

3.1. LINEARIZED MODEL WITH1 RESPECT TO INERTIAL AND STIFFNESS
PARAMETERS
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In this section, we define the phystcal paameters wich appear in the calculation of kineac
and potena, enegies of Ci. These parameters define the standard set of parameters of Ct.
Equ nons (2), (3) and (7) lead to:

toi min

x + j(x) qje(t) +Y. (0',(x) z - 'I51 (x) y) qje(t)
J=l J=l
mI mi

RLiM y + I -bp(x) qje(t) - X 4 lt4(x) z qje(t) (13)

J.1  J=1

z + O 
0 il(x) qje(t)- l Ojh(x) y qje(t)

z J=I J

The contibution of C, in the total kinetic energy of the robot is defined as

Eci = h o(OOM)2 
dm (14)

where ROM . bROM

The expanding of eq(14) using expressions (12) and (!3) leads to a linear expressiu.t
with respect to the following parameters of link i:

hn0
12 d in

, ini 1 02 <5jl(x) -bj (.
) d in , ilz 104

( )d

01
1

1() den iin l2
0

nIX 10 1 4)JI) den

with
"(51. 02) -E (x. Y, z) x (x, Y, 7')

-k= 1 ..., 6;I= I ..., 6;j= 1_ .mi;p= I ... , mi

In order to reduce the large number of parameters, we take into account a few
hypotheses about the shape of the links. Thus, if the links are modeled as homogeneous
and unfom beams of constant and symmetc cross section, the integral on link becomes
a product of an integral on the section and of an integral along the length of link L

020,1(x) dl (x) dm =Pi '0 1  il( dx 11 52 dS (15)
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If the length of the link is defined, the integrals of the functions (Dkor of other functionals
of these functions (product space derivaive,..) are known.
The only unknown r -amters are those which depend on the integral on the section -they

are defited by: i 32 dS

Fially, r~e only unknown paramecters are
p, St. pt 'xi. Pi lyi et p, t (16-a)

with
-pitis the volutme mats of link i,
-S, is the section of link i.
- Io lys and It, ire the quadratic momenta of the sect'on.

From the sanme hypotheses, it appears that the total potential esergy - sum of potential and
gravitationtal energies.- dependlinearly on the following parameters -

p, S1. E, S1, G, Iss. El Iyj and Hl 1
z, (16-b)

where
C, is the Young's modulus of link i.

-G, is the zranisverse modulus of link i.
We take into accotmn i concentrated masses which are distibuted along the neutral axis of
the '.tam - figure 3- Therefore, we introduce pt additional parameters which are the
inses ttt, of these elements.

figure 3 -concentrated masses

Finally, the standard set of parameters of a n-links robots is:
X.[XI XiT,.XnTjT (17)

where
-Xi=s((8T + pt) 1) vector of linki paratmeters El, ~ ~ (8

Xi fpiSi, x. pli irMI
r- mi is the jih concentrated mass on the link Ci at the abscissa )aj

*pi ithe iotal number of concentrated masses along link C1.

3.2. ENERGY IDEN'IFICATION MODEL

In order to identify the inertal and stiffnsas parameters of the robot, one can use either a
dynamic model or an energy model. We suggest using the energy model in order to study
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the minimality of the standard set of parameters because of the following advantages it
uses scalar functions instead of the vector functions of the dynamic model and it avoids
accelerations calculation (18].

The energy model is obtained from the total energy variation principle:
t2

H(tl) - H1(2) = AH (q, 4)-= frT q4 dt (19)

where:
- H - E + U is the total energy of the structure
- E is the kinetic energy
- U s the total potental energy. U = Ed + Ep
- Ed is the elastc potential energy.
* Ep is the gravity potential energy.

- is the ame denvative of q,
- q = q...q T

T Is ne (n + ne)x I vector of the deg;=s of freedom of the structureqi=[ qR1, q a
T

- qpj is the joint variable of link i,
"qe is the (ni)xl vector of the elastic degrees of freedom (modal or nodal coordinates)
of ink,

n
- n 1 - , ml, is the number of elastic degrees of freedom.

- ris the vector of torques of the actuated joints
It ts easy to verify that eq(19) can be rewritten linearly with respect to X.

t2
n

AH (q.) = Alh .x'= frT q d, (20)
i-I it

where
* Ah' = hi(tl)- h'(t2)
- hi 

(t)= [ h'(t) .... h8p 1() I is he coefficient of Xi 
in H

4. Minimum Parameters

A classucal identification method consists in a sampling of the linear model defined by
eq(20) at different umes (ti = 1, e). We obtain an overdetennied system :

Y = W.X +b (21)
where

12

Y is the (e x I) measurements vector; it corresponds to different values of IrT 4
dt at different instants tI and t2.
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*W is the (e x 8 +p, )observation matrix which is related to the corresponding

values of Ahi,
*bis the(es xI) errors vector.

Tht nmiialaty of X is proved by calculating the rank of W : If W is a full rank matrix. X

is minimal and the least square solution X is analytically given as the single solution of the
normal equations '

[WWIX =WTX

In order to eniure the robustnesi of tis identification process, we suggest to study the
formal independence of the functions Ahi. In the case of flexible -- acnires, wit e
section 2 hypotheses. we offer conditioni for regiroupi.:gs which depend on the cigen
functions (or shape functioni).

4.1. FUI4CTONAL INDEPENDENCE

The expression (20) defined on a vector space Ei of functions diit - from R2(n+sci) on

Rn. Thus we can formulate the search of a minimal set of parameters as the firmly of
fanctions (Ah jI independence analysts.
In fact, if one can find a linea combination such as:.

I Zce-Ahk with (r. k) ;1(i.j) and ak E R (22)

with ar constant, the energy model is equivalent to the new model obtained by eliminating

X and by repacingthe4r by Xr+ a r~

Let aj be a ( (B+pi)xl) vector:

A secessary and sufficient condition for the family (Alsj) to be independent is:

VciE flS+pi wtth ViE: 11, n),

'1atAhi0 4* Vie:[,n). QiO- (23)

wheren is the number of links of the structize,
8+pt is the diancnsion of the standard paramoters vector of link t.

*p5 is the number of conentrated masses.
if the condition (23) is not verified, the family 14%h!) is linked and sonme linear

combinations exist between the Al Some regroupings between parametersa are
possible.
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1) The functional inidependence must be verified for every couple (q, q).
2) The condition (23) can be rewritten with N. Hence, we obtain

a' lhi+ C=O0 (V qq)) c*a' 0Qi =1, n (24)

where Cisa constant wthrepecto (q,)C= XalIh I for 1 =11

4.2. CONDITIONS OF REGROUPING. CASE OF A SINGLE LINK.

In what follows, we present the recrouping conditions of parameters of a link with
parameters of the same lUnk

The functional independence of (Ahj ) does not depend on the valuet of q and q Thiut. it

has to be verified for any set of couples (q, q ). It hiaa to be verified particularly wsth qk -

4k - 0for k-d...iIland qp, 1i =. Itheoton ofte link isonly parametrizd
with itn elasie displacements. its kinetic and potential energies are given by the following
expressionsa

I I

2 Eci= 6 (pi Si bi
2

(x) +pi Ix, 611
2

(x) ~p, lyj 612 (x)+ pi 1
z, 6312 (x)) dx (25-a)

2 Edi=J1(El Iy e'212(x)+El z 6'12 (x)+El Si u1
2
,x(x) +G, Ix 01'2 x(x) )dit (25.b)

Epi - ofpi S, UiT(x) g dx (25-c)

where
-index l it the orientation of beam neutral axis, indexes 2 and 3 ame the base vectors of
the cross sectiont.
g gis the gravsty vector.

Similarly the kinetic energy of one concentrated mass titr at abscissa xsr is given as:

Ecoselr .1me, ;i
2

(txcjr) (26)2
and its gravity potential energy as:

Epoicir -their uITxjr (27)

Prom equations (18), (25). (26) and (27), we can extract the 8 + pi coefficients hj' of the
standard parametes:
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I.Ii It
hpiSi J(UT(x) g + Ui2(x))dx (28-a) hpiix1  f6 12(x) dx (28-b)

It It

bpjIyj = 
2

(x) dx (28-c) hpilsi 6 2
(x) dx (28-d)

Ii It

hEilyj e 12, x(x) dx (28-c) hEtlzi 0 J e x(x) d x (28-0)

I I
bGilxi =j 9 1, x(x) dx) (28-g) bEiSi u 12, x(x) dx (28-h)

hnr. usT(xwi) g I u'
2(xcjr) r - I_. p, 28i

4 2.1. Expression OfThe h) as aFunction Of4V(x)
Now, by using expressions (8). (9), (10) and (28), it is possible so write sthe (8 + pl) corn-
ponens hj of the suandard parametets with respect io the coefficients O

2
(x)

Ii

hptSi =J (q1jj tPsT(x) g + 4teT t!T(x) l'4(x) ii)dx

- q1jT GpjSi + 4ic ApiSs 4k (29.a)

hpiIx, = J jsT 0T(X) T4i'0) 4lie dx = 4ieT Apailtle (29-b)

hpiiyi - jqteTT3,,T(x) 4>,,x(x) 4ie dx - 41iT Aptlyt ilie (29-c)

bpilzi . J q eT 2,T(x) T2',x(x) 41C dx - 4iieT Apiles ic (29-d)

hEilyi = qieTD3',xT(x) Iibu(x) qse dx = qijT KEilys qie (29-e)

hElIl = iqiT 2,xxT(x) T2'xxx) qle dx = qieT KEslin qic (29-f0
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h =LijI qIT 041',T(x) T4",(x) qie dx = Ie~T KG~ilx qie (29-g)

hEiSi = qeT -DixT(x) 01(x qie dx q1IT KaiSj qie (29-h)

hincsr = 2 q1 4i 0IT (,ci) (Xcir)) qie +q 1 TT x'ltc) g

~~~~= 1i mi jAncrqi ,P (29-0)
with:

ApSi Jr .Tx)!21(x) + IT(x)!2 (x+ T(x) Ii W I dx

A Ja 24Tkx)St(x) dx; Aptly,- !L,xT(x !kx(x dx

ApIna =k J ~T(x)!k4,x(x) dx

Air - !& T~cr!'~cr +!2 'T~r (xcir) + 21 -)!2X r) r= .. P-

Ii I i
KEjSi - J '.x)!kl,x(x) dx,; KEalys j !P,xT(x)!k,xx(x) dx

Ii It

KEhlza = J ,xxT(x)!k,x(x) dx, KCilxi =,J . (x).,X(x) dx

GpISIi Jtl(xtl)Tg dx; Gmc t (xc.r)T g r .P

The dumensions of the inances Aa, Kk and GS are respectively (in, x in,), (i x in,) and
(ini x I).
We note that the link i total eners HI can be wntien as:

H, - T A' 4ie + qjeT KI qic + q1iT GI
where

A[ is a constant watmx

Ai = ApzSt piSi + Apllxa pixm + Aptly, pIlyt + Apilzs pilzl + IAnicir incir

K
t
Is a constant mna=i

KI - KE1Sj E1Sj + KEilyt E1iyi + KEilzi E1izi + KGm Glxi

343



7-T
GI is a constant mamx

G'= Gpisi p1Si + iGincir mcir

4 2 2. Regrouping Conditions
Ifsa linear combination exists between the functions of energy hi of the lisnk i. it can be
wrttten as follows

d' hi + C = 0
Rewritten with respect to the matusces As, Kk and Gg, this expression leads to a litnear
comsbination between these matrices:

PI
lteT(apiSi Apil+ api~xs Aptai+ cepilyt Aptlyi+ apslzi Apulzi+ ai ~cir Am=) qie

+ qteT (aElSi KEiSi +aEilyi KEilys + aEslz KEim + CtGiljt K~sixt qte

+ qieT (apiSi GptSI + Pi cmctr Gmnir +C =0 (30)
rA

However, by definition, the modal or nodal coordinates -qie- and their time derivatives.-

ihe- are independent Hence, eq(30) leads to the following linear system of equations

Pi
apiSi Apisl+ cepilxi ApLxi+ Ctpllyi Aptly,+ (tplm Aplli+ A auixir Atocir = 0

Pt
ctpiS GpiSi + I amcirGm= , 0

aEiSi KESsi + aE~i KEtlyi + aEiln KEsIus + (tGIa K~~i = 0 (311

To each symetrc: matrix Aa and Kk can be associated a vector Aa and Kk, obtained by

ordering one by one and in a predefined order the components of Aa in A. and the

components of Kk in 4.
Thsedimension of theA: and *macesisPi(-+ )x
Finally, we obantefollowing system of equations:

with:



F 0, 0 0 GpiSi Grmcsl Gtncs2 Grocpl

AK 1
raid K S [ * * KE* KG.~b 1

ai E Ita i Kally;alzl piI

=o ac amrc12 .. ;ameipdT

=~~ [atEjSi; tiEslys, citIzn aGLxi JT

From eq(32), we can formulate two theorems:

TheormI.
If the rank - c- of the matrix D1 is equal to (8+pi), there is no regrouping. Therefore,
there are (8+pi) minal parameters.

With thsa conaition, the matrix of the system described by cq(32) is a full rank
matrix and !he single solution of this system is the null vector. There is no linear
combinanon between link's parameters and no regmupinigs.

Theorm 2:
If the rank -c- of the matrix DI is lower than (S+pi), there sic sonic linear combsnations

between the functions i which lead to (8 + p, - c) regroupings

ctaslower than (8 + pi : cis the maxmun number ofblnes or columns of Di whic'h
arc independent. The dsmension of the vector space E is c. We can buid a base of
this spsce with the c independent columns.

If there are some regrouping$, the miunimuma set of paramseters becomes XRi. Its
dimenson is c. XRI is obtasned by selecting the principal parameters which fit with the
minor of maximal rank extracted from DI.

-As one can notice that matrix D I is a bloc diagonal matrix - se., eq(32) -, the
consditton of regrouping which depends on the rank of D

1. lends to the two following
conditions:

rank(A ,) -4+ p, es rank(K, )4
* ns is the number of elstic degnees of freedom

Smi (in, +3)
rank(Aie) 

4 
+pi- 2 ~ 4+pi
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If mj =3 and pi>5, we are sure that a regrouping exists:
in, (mi +3)2 =9 and 4 +p,> 9

If there are some regroupings, we only keep functions Ah which are ind:pendent and notequalto zero. If Ah= 0. H does not depend on k. Now we suppose that te modal (or

shape) functions are chosen in order to prevent the possibility for any Ahk (i1=,. in

k=i,...,8+pi) to be equal to zero.

4.3 CONDITIONS OF REGROUPING. CASE OF N LINKS.

We uppose that all the possible r-egroupings described before have been done. They lead
to the independence of the energy functions for each link.
In this section we demonstate that there is no regrouping of a parameter of one lank with
some parameters of another link. The demcnsotaron is based on a recurrence from link n
to link I. We have:

n n-I
al 'Ah =0 ,, anAhn+ aLi'-=0 (33)

Expression (33) must be verified for any value of (q, q). One can choose two instants tj
and t2 such as: {qR(tl) = qRi(t2) and qp,(tl) = qRti(t2)

Vi=l,n-1 (34)
nI-e(tl) = 4ei(2) and qei(tl) , qeikt2)

With this couple (q, 4), we can notice that
V iw I, n-1 Ahi=-0

because the components of h' depend only on the components of the vectors qj et qj (j =
1, i). In fact, the total energy H, of the link is a function of the standard parameters vector-

XI - and of the components of 4j and qj (j = 1, 1).
Thus, expression (33) ana conditions (34) lead to:

n Ah
n =0 (5)

First it appears that there is no possible regrouping of parameters of the link n with the
antecedent links parameters.
Moreover, we have an - 0 thanks to the results of section 4.2.
So, there is no linear combination between the parameters of the link n and the param=trs
of the other links. The only possible regrovp.ngs of parameters of link n are regroupings
of parameters of thus link with some parameters of the same lank.
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In the same way, we demonstrate by recurrence (k = n-I to k = 1) that for the whole
structure the only posstble regroupings are regrouptngs of parameters of one link between
them.

5. Conclusion

We have just shown that it is possible to study the tmmmahty of the dynamic parameters of

The approach we have chosen ts general and symbolic. This approach can be applied to
any type of robot. It is symbolic because tt is not necessary to simulate a random trajectory
in order to find a sequence of points. Our approach ts based on an analysis of the
independence of the energy functons.
Finally we have presented a method whtch leads to a necessary and sufficient condition
(theorem 1) which ensures the mmimaihy of the set of standard parameters of a flexible
robot. These conditions depend on eigen functions if the model comes out from an
assumed modes method and on shape functions if the model comes out from finite
elements method.
Especially the dimension of the minimal set of parameters is linked to the number of modes
used to describe links' flexibilities.
Lastly, in the case of robots whose links are all flexible, we prove that the only possible
reroupings of parameters are provided with parameters belonging to the same link.
Further developments of this research deal with the identification process. Results have
been obtained previously on a two flexible links planar robot. The identification is in
progress in the case of a three links anthropomorphic robot.
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SAFETY AND SURVIVABILITY ANALYSIS OF WALL-CLLIBING ROBOT

Behnam Balr, PhD.
Guanghua Li, Graduate Student
Wichita State University
Mechanical Engineering Department
Wichita, KS 67260-0035, USA

ABSTRACT* In this paper, an explanation of the need for the climbing robot is given
first. Second, a safety analysis is performed to illustrate how the robot is guarded

against falling. This safety analysis is used to determine the design forces required on
the suction cups that hold the robot in place. Finally, a survivability analystis was done
to show that the robot can withstand a drop from a height of 13 meters if it were to fall
If the robot does fall. it would be desirable to minimize the amount of damage on the
equipment mounted on it/ robot. The method presented in this paper proposes to swing
the arms of the robot into the direction of the impact, using them to absorb the majority
of the impact energy. For analysits of the fall protection system, a multibody model was
developed to simulate its dynamics during a fall.

1. Introduction

Robot manipulators are well suited for structured environments and are currently being
used for most modem manufacturing operations. Researchers are continually looking to
expand the application of robots in other areas. Ordinary robotic manipulators used in
normal industrial applications are not suitable for unstructured environments such as
nuclear power plants, chemical plants, tall buildings, bridges, ships, and aircraft. Robots
needed for unstructured environments must be mobile, intelligent, and be able to perform
tasks that are dangerous, difficult, and tedious for human operators However, these
mobile robots have some limitations To extend the capabilities of these robots, a
relatively new and exciting idea for climbing robot is being developed. This climbing

't robot can move on all surfaces -- walls, ceilings, and floor. Since climbing robots have
the capability to move around freely, they have the most potential for use in unstructured
environments, performing tasks such as cleaning of a tall building or repairing a ship.

Mobile robots can replace humans or reduce the exposure of human. in hazardous
environments. They can also relieve workers from repetitive work. Research on mobile
robots and legged locomotion has been pursued for many years, and there have been
many excellent contributions made in these areas. Hemami [1] considered the stability
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of a mobile robot on rough terrain. Waldron (2] studied the kinematic analysis of the
legged robots and developed an algorithm of motion planning for a six legged robot.
Messun et al. (3] discussed two types of walking mechanisms, one with control of multi-
joint legs and the other with decoupled degrees of freedom. He showed that multi-joint

legs would be able to negciate rough terrain better than the machines that walk with the
fixed pattern Song [4] described an efficient analytical approach for gait study and an
application for sequencing and placing the legs. McGhee [5], Isik (6] and Crowley [7]
investigated computer control of legged robots on various terrains. However, the mobile
robots used in the above studies do not have the reach capability that one may require
in an unstructured environment Due to the deficiencies of these mobile robots, there
is a need for another class of robotic systems such as a climbing robot. Climbing robots
can be designed to move or climb on almost any surface that is horizontal, inclined,
vertical, and even upside-down on a ceiling.

Robots that can attach to and climb on many structure surfaces are just beginning
to emerge. Research on mobile climbing robots for inspection and maintenance is being
pursued in Japan [8, 9, 10, II], France [12], Russia (13], and recently in the U.S. (14,
15, 16] A wall-climbing robot built by HIrose [8] uses magnets which allow the robot
to move on the steel walls of steam boilers in nuclear power plants or ships Akir, et

al. [9, 10, II] designed and demonstrated several climbing robot, one of which could
climb a vertical wall of a building using a turbo type fan system to create adhesion and
driving forces.

The climbing robot presented in this paper is a succession of the ROSTAM
(Robotics System for Total Aircraft Maintenance), which was devised at Wichita State
University [14, 15, 16]. Its predecessors include ROSTAN! I, a four-legged robot with
suction cups on each of the legs as shown in Figure 1. This robot can move in two
directions perpendicular to each other or diagonally in a series of steps in either
perpendicular directions. This robot can also travel on a slightly curved surface.

ROSTAM It. a two-legged robot shown in Figure 2. can also travel on a curved surface,
but it can only move in one direction. The advantage of ROSTAM I is that its lighter
weight. The next generation ROSTAM IIl, shown in Figure 3, has a central rotation

system for changing the moving direction to any desired angle All three of these robotic
systems use suction cups for adhesion. The suction cups were adopted, since they can
adhere to many more material types than the magnetic method.

The safety analysis is performed so that the robot does not fall. However, if it

were to fall, the simulation results are presented through animation and graphical
representations. There are many animation programs in today's software market, such
as Autodesk animator pro (17], which uses a movie method, but this kind of animator
is not suitable for mechanical system animation For mechanical system animation, a
physics-based animation needed to be developed. Thus an animation/simulation system
based piogram was develo-ed [18, 19] Using AutoCAD, the geometry of a complex
mechanical system can be easily modeled and modified using the graphics database
interface. A new graphics database can be produced for each animation frame by
processing geometric nfenmasion from a graphical database and simulation results.
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Figure 2 ROSTAM 1, thtou legged robot
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Figure 3 ROSTANI Ill. two legged ronot with rotational center

2. Robot's movement commands and specifications

As shown in Figure 3, there are two suction cups allocated on each side of the
robot's two legs, and there are four suction cups in the center portion ot the robot The
suction ',acuum generators are connected to each suction cups for satety reasons Two
air cylinders comprise the legs which are used for creating motion of the rooot The
rotation of the robot is with respect to its base is the moving direction This motion is
generated by a DC motor through a pair or worm gear systems The central portion of
the robot sticks to the surface while the two legs rotate about it to a desired .ire 'to
The suction cups on two legs can %ork either synchronously (both legs are sticking or
moving), or asnhronously (one leg is sticking to hold the robot and the other leg ih
making a tor, ard movement, and then attacuing its suction cups on the suriace to hold
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f'= f(q,qsy') (5)

Where q,, q, are the reaction iorce density at extreme point A and B respectively

Figure 4 Safety analysis model of the robot.

'A''

A, ", "'

Y 
Y

7 -- I 

Figure 5 Safety analysts or the robot mo',ng in the a direction
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3. Safety Analysis of the Robot

The most important consideration in designing the climbing robot is to ensure that it is
secured firmly on the surface while climbing There are two dangerous circumstances
that could occ sr when the robot is climbing on a surface. One is slipping and the other
is failing In general, the robot can be modeled for the safety analysis while climbing
an inclined surface as shown in Figures 4 and 5 In Figures 4 and 5. e represents the
inclined angle, and a stands for the moving direction When e equals 90', it means the
robot is moving on the vertical plane, and when e equals 180, it means the robot is on
the ceiling.

The tipping moment which would cause the robot to fall can be expressed in xyz
coordinate system as:

Mx = m g h s.n0* M. cosa (1)

K, 5l s.ne (2)

Where
m is mass of the robot;
Md is the dynamic moment caused by the impact of the cylinder,
g gravitational acceleration,
h height of the mass center of the robot.

The equivalent total tipping moment and its directional angle .an be obtained as.

M - M ' .M"(3)

3 - tan-'( M, / M0) (4)

Using the above equivalent total tipping moment, the equilibrium equation will be created
so that, except along the line with 0 degree, there is no active moment.

As it is observed from Figure 4, the highest point on the suction cups (the point
with maximum y' coordinate in x'y'z' system) has the most and earliest tendency to leave
the surface, and the lowest point (the point with the least y' coordinate in x'y' system)
has the least. Therefore, it is reasonable to assume that the reaction force acting on the
suction cups has linear distribution along y' ants shown in Figure 4. Based on this
assumption, the reaction force density (f') on every point of the suction cups can be
expressed as a linear function of its y' coordinate in x'y'z' coord,nate system and the
amount of the reaction force density at extreme points A, and B or'
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the robot) The detailed worKing procedure for synchronous operation is explained as
following,

(1) Initialization consists of all the suction cups stick, g, one leg is in a retract

position, and the other in extended position, as shown in Figure 3.

(2) If more steps are required continue, otherwise stop the movement.

(3) Check the vacuum on the central suction cups If vacuum is not good stop,

otherwise continue
(4) Release the suction on the legs.

(5) Move the legs away trom the surface for a predetermined amount of time

(6) If desired, rotate the legs in a new direction

(7) Extend one leg and retract the other leg

(8) Start the vacuum on the legs

(9) Move the legs so that they touch the surface

(10) Check the amount of vacuum on the legs suction cups. if vacuum is not

good stop, otherwise continue.

(11) Release the vacuum on thi central suction cups.

(12) Extend one leg and retract the otiher one At this time, the central portion

of the robot will move one step.

(13) Start the vacuum on the central suction cups

(14) Go to step 2.

The voltage used for DC motors and solenoid valves is 24 volts The diameter

of each suction cup is 1I 4 cm. The suction cups can create 34 5 kg force under 18 Hg

vacuum according to the component catalog [20] More specifications of the robot are

Table I Specifications of the robot.

Robot parts We:.qht (Xg)L riLgh (em) Heqht from surface (es)j

Central body 8.5 20 14

Right leg 1.0 6 8
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The reacuon force acting on a sucuon cup "i" can therefore be written as-

f ,di f, dy, f f(q,, q8, y) dy' (6)

The moment of each suction cup contributed by the reaction force can be expressed as

M. 4j X"' (7)

M, 4P Yci'

Where x',,, and y',, are the x and y coordinates of the center of the suction cup 'T' in
x'y'z' coordinate system; and d is the diameter of the suction cup.

The force and moment equilibrium equations are derived as.

i.F y"'-iM'- M cos(au )-0 (8)

SF x,' - My- M sin(a. 0) * A (9)

m g cosO + n F fi " 0 (10)

Where
F is the suction force produced by a single suction cup;
y'. is the y coordinate of the center of suction cup "i" in x'y'z',
f, is the perpendicular reaction force acting on sucuon cup "i";
M is the moment causing the robot to fall, which was expressed in equation (3),
n is the number of suction cups holding the robot.

When robot is in safe condition, the perpendicular reaction force which is acting on ever'
point of the edge of the suction cups should be greater than zero. The critical case
occurs when these reaction forces become zero; for example when q, becomes equal to
zero. This means there is no contact between the suction cup edge and the surface, and
th ...,or will fall. The result of the safety analysis is shown in the Figure 6 The most
dangerous condition for this robot is when it is climbing and inclsned surface with the
angle of about 150 degrees, and moving in a 45 degrees direction as can be seen in the
Figure 6.

356

Li



la

90

80 6= =18
"2" Y=6

50=15

0 10 20 30 40 SO 60 70 80 90

Moving Dire. Angle (dog)

Figure 6 Safety analysis results

4. Survivability Analysis of the robot

The robot under development is designed to operate autonomously performing
tasks in areas difficult to access with a human operator. One such task is performing
external inspections on aircraft skin joints. On an aircraft like the Boeing 747, it would
be possible for the robot to fall over 3 meters unobstructed (not including the tal
section). A 3D simulation/animation program has been developed so that the robot
response as a result of a fall is observed. The goal was to create a geometry model
which uses dynamic performance of the robot to control its motion dunng the fall. From
the dynamic analysis results, graphical ammations of the robot were produced. In order
to obtain realistic representation of the robot, a shading technique was employed. The
developed 3D animation algorithm is geometry independent; hence it can be used to
animate variety of different mechanical systems without rewnting or modifying the
program.

The robot under consideration is sometimes an open-loop and sometimes a closed
loop system. Hence the differential equations of the motion of the robot were formulated
using Cartesian coordinates. The use of Cartesian coordinates and the resulting
formulauon of the equation of motion in a Newtonian form allow the modelling of both
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open and closed chain systems in a simple manner Furthermore. it enhances the
simplicity of the numerical formulation or generation of the governing equations, and the
numencal development of the solutions. A general body "i" of a multibody system under
consideration, such as the robot, is shown in Figure 7 A set of local body-fixed
coordinate axes '" with origin at the element mass center C, ts attached to the body
To descnbe the configuration of the body ts a non-moving reference frame xy. it is
sufficient to spectfy the spatial location of point C, and the angular onentauon of the
local axes A vector of Cartesian coordinates for the body, q, contains r, = [x. y, z],
and p, = le0, eJT = [e, e., e2 e3 n The four parameters eo, e, e and e, form a set
of normalized quatemions, known as Euler parameters describing the rotational
configurations [19]. The parameters are described below as:

•cos(-±) (i I)
e
o -Cs

"= sm(-) (12)
2

eo .el 2.ee (13)

where, u" describe the onentational axs of rotation, and 0 is amount of rotation For
an unconstrained body, the translational and rotational equations of motion are given as
follows:

mA -A (14)

,,,. /,A .
t  

(15)

where in,, represent mass of the body "i", r,, acceleration of the mass "i" after. J, its
inertia tensor: w' and ' its angular velocity and acceleration respectively; f , n', are the
forces and moments acting on the body "t" respectively. For a constrained system, such
as the robot with its legs either attached to the surface or not, constraint equation 4, exist,
which describes the dependency of coordinate q; i.e.,

, - ,O(q) -0 (16)

The differential equation of motion in the matrix form will be in the following form.

M4 - g .(17

where
NI is the system mass matrx;
q is the system acceleration vector;
g contains the applied and the gyroscopic forces and moments,
X contains a set of Lagrange multipliers associted with the constraints,
4,D denotes the forces applied at the joints.
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Figure 7 Configuration of body "i" with respect to xyz coordinate system.

Corresponding to these second-order differential equations of motion, twice as many
mlal conditions are needed on the coordinates q and the velocities 4 as.

q(O) - q', q(O) - q.1 (18)

For these mixed differential-algebraic equations of motion for the robot were
solved by a simple numerical algorithm The second time derivatives of the constraint
equations were appended to the differential equations of motion to form a linear set.
which at any instant can be solved foe the system acceleration and Lagrange multipliers
A direct integration method using the Cartesian coordinates and velocities as the state
variable ot integration, together with a forth-order Runge-Ktita with an adjustable step
size were employed.

For a simple falling of the robot in a plane, with no other external forces other
than gravity acting on the robot, the anlysis reduces to a two dimensional analysis For
other conditions, the 3D analysts must be performed Either way, the trajectory of the
climbing robot can be obtmned under the action of different loads. In order to visualize
the dynamic behavior of the ROSTAM III during its fall, the result of the simulation has
been converted to an animation program

In the analysis, the right leg was assumed to be in the extended form and the left
leg in the retract form Three test cases were used to evaluate performance and establish
rate requirements for the leg pivot motor All cases initialized the robot with zero rates
and accelerations and the legs positioned at zero. Starting attitudes of the robots body

were chosen as 90%. 1200
, 

and 180* , and the result of ,mimation are shown in Figures
8, 9, and 10 respectively. No cases less than 900 were chosen because it is assumed the
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Figure 8 The simulation of the robot falling with a 90* angle

Figure 9 The simulation of tue robot falling with a 120' angle.
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Figure 10 The stmiflatton of the robot falling with a 180' angle

Angle VS. Time
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Figure I I The angular position of the robot components with respect to inertial frame
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Velocity VS. Time
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Figure 12 The velocity of the robot component with respect to inertial frame

robot would slide until an edge was reached. Minimum height that the system should
respond in is initially taken to be 1 3 meters Final values for survivable height
would be determined by how fragile the payload is. Figures 11, and 12 show the
angular position and velocity of the each component of thr. robot dunng the fall

6. Conclusion

A description of ROSTAM III (Robotics System for Total Aircraft Maintenance) was
presented in this paper which has two legs and a central rotational pan for its
movement. This robot was used to provide a prototype for the further needed
research in the area of climbing robots It was shown that these robots can climb on
any inclined plane, including vertical walls and ceilings. The safety analysis based on
the assumption of the ineat of the reaction force was developed for a general case,
and the robot has proven to be safe for all condilsons Suction cups were suggested
for the adhesion of the robot to the surface, because they can stick to most type of the
materials. Finally, in case the robot falls, a method was developed to save the robot
and its expensive equipment, The results of this analysis show that the protection
system is viable The animation and simulation program have proven to be very
useful tool in evaluating the robot performance during the fall.
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Symbolic Computations in Flexible Multibody Systems

F. MELZER
Institute B of Mechnitcs
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W-700 Stuagan 80
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Abstract The Deed for computer aided engamemrig is die analysis of machases and mectisms led to a

flexible bodies. Consequsstly, tie equatiots of=olo are, derived in a form indaependentiof the chosen mod-
eling technique for the elasti bodies

1 Introduction

Multibody dynamics evolved a quarise of a centutry ago from thle need to silsulate thle dynamical
behaviour of spacecraft and maclam. Nowadays, die meatsod of multibody systems is welt

eaabhisted and acceptied, once it proved to be a valualie toot in the dysnacat anAlyiis of mecha.
nasms suds as robots, vehicles, and spacecrafts. Early works focused on the devcirpment of ineths-
odologies for rigid boiles only. The need to model as well the small struactural deformations led to
hybrid models. Ukins [I5) introduced hybrid coordinates to tile multihody approach andi the
Floite Element commsanity developed fo.-mulaitlons; to take into account thle gross mottos of the

structural system. e g. Belytechko and Hsieha (41 From these works te wide field of flesshae mul-
tibody systems evolved Presently, modelling techsniques for itexable multibody system's can hr
classified into:

inite element approaches using a nonlinear ftmslIatln andabsolute coordiese. e g
Cardona and Geradir, (6).

*Muluhody approachs rsuming a large geoss motion and eitlsex small etastic deformaaions,
e.g Shtasna and Webagr. (23). or nonlinear deformations due to geometric or materal non-
lnearnues. e g. A nribdslo, and Nikeaves (I1).

Mui paper focuses on the multlbody approach. %ich is very efficient from the colnpusasossl
poant of vlsw. Multahody models consist of rigid and fltsile bodies interconnected by joits and
force elements. as msassless springs, damrpers. and actively controlled elements. see fig I The
'oits have different properties and constrain the motion o* the bodies
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center )I g'ivty e d*. amper

- flexible body inertia frame

Fig 1 Schematic representation of a multabody system

In the roulsibody approach. techiseques for tse incorporation of flexible bodies are

'Ibe superelement technique where a flexible body is described as a series of rlj~ld bodies
interonnected by classic force elemenis. Rauhs and Sclslelen (191.

T1iw continuum approach where a flexible body is dlsciretized using either global or local
Mlape flunesions. e~g Shabania and Wehage (23). A vpnlalon of this approach is te lumped
mass risulasian. e.g. Kims and Haug (14]

Wills the avallabiUty of powerful generail purpose computer algebra systems. such as MAPLE
(7). MATHEMATICA (29). AXIOM (121. and REDUCi (5]. symbolical compusatioos are becoming
more and more an important tool in engineering analysis Problems are raher solvedl in an analyt.
ical-onerlcul way than in a pure numerica way, seene g. the I'mltc element approaches of Beltner
(3) and loakimidis jl '11 riese of computer algebra may greasly reduce thre effort for numetlcal
calcrdasloo We faclitates the physical interpnealon of the solutior.

Symbolical formalisms for t dynamical analysis of rigid esultibody systems are successfully
used for more shais a decade. Sclsllsen and Krner= (21) The symbolical generation of the equa.
usens or mrosion Is particuiarly attractive. since Use equsations of motion are desivedi in an explicit
form. miultiplicasions with zero elements arn avoided, and the numerical proceduire of time sote-
rAsta eu decouplets from Use derivation of the equiations of motion. I e. the eqluatioes of motion

have to be generated only once. Nevertheless, there are limitations in symbolic compusing, in par.
sicularin fo leyxjble mulsbody systems. Drawbacks are, that only simple structural elements cats be
described by means of a symhclic approacs for tse displacement field. Beltrer (3). Furthermore a
large numbher of degrees of freedom maity result is long expressons. wInch may be difficuilt to han-
dhe by a computer algebra system.

These drawbacks seem to be the reason that le a recent overview of available mWubotix codes,
.chlclen (22), nne of the reported symoolic formaltsass was able to deal with flexible bodes.

There in. hoiwever. some recent work dlealing with symbolical formalisms for flexible bodim., e g
Ider and Anslruche 110) and Salecker (20). but so far they are ressected either to a certain class of
bodies, mostly beams or unusses, or to planar problem.

Ilse scope of this pape in to present a formulation of ther equatios of mousen for flexible bodies
uadergoseg a large gros mousen and small elastic deformations overcoming above mensiored
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drawbac. A mimmum set of generalized coordinates is used to generate the equations of motion
in a compact form sutable for symbolic computaion A standardized object-oriented data base is
used as an interface to numerically precomputed data deacribing the elastodynanucal behaviour of
a flexible body The computer algebra system VAPLE is used for the generation of the equatoas of
motion in terms of the objects of the data model Since not all symbolical terms can be traced back
to input variables, the equations are denominated senu.symbolical equatons of motion

2 Kinematics

Tle kinematic description of flexible and rigid bodies is done through the introduction of moving
reference frames. Te motion of a flexible body is described by the large nonlinear motion of its
reference frame winch is referred to as a "rigid"-body motion, and by small elastic deformations
within this reference frame, see fig. 2

~path of the

virtual a volume element dV
uindef. mied-

it? ', q deformed' "! r]configuration

refererce r~h) 0e2 r~tt)
frame J#3

~Oel
inertia frame 0e)

Fig. 2 General Moln of a free elastic body

KINEMATICS OF FLEXIBLE BODIES

Tha position and orientation of the reference framej, formed by the vector baSise =Jea with c =
1(1)3, relative to an itnetial frame Oe a z 1(1)3. is given by the transladonal vector r and the
rotational tensor S, respectively Denoting the location of a volume element dV in the undeformed
configuration by e and tle dispiacemmat field of th flexible body by u = u (e. 1). the position of lhe
volume element dV with respect to the reference frame is expressed as

d(ci) = e .4 u(c,) (I)

To aitve at a imminmum number of degrees of freedom the displacement vector u is expressed as a
!inear combination of selected deformation modes.

u(c, 1) = ,(c)qQ) (2)
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where q are the generahzed elastic coordinates Methods for the selection of deformation modes
wtthjn flexible mutibody systems are presented by Kim and Hang [14) and by Meirovitch and
Kwak [17). Using the finite element method, the global shape functions 0 are written as

0= S A BT. (3)

where 4 is the element shape function manrix, S and S are the appropriate transformation matrices
from the element to the reference frame, B is the Boolean matrx describing the assemblage of the
finite elements, and T denotes the modal matrix The deformation of the elastic body renults in
strains and a state of stres wldn the volume element dY Strains are measured by the Green-
Lagrange strain tensor whose components are writnen as

I (au, +uj +aukauk

T'ne strain vector

e = [cfi C22 e33 21 2 2e23 2 31 r = eL+£NL (5)

is decomposed Into a term e,, linearly dependent on the displacements u. and a nonlinear term
*Nt .It has to be pointed out that due to the large displacement of the flexible body the second

ordeLterm INL has to be considered In eq. (5). Using appropriate differential operator matrces A
and A(u). eq (5) is rewritten as

e = Au+A(u)u. (6)

Substituting the displacement field by eq, (2) yields

e = Lq + 4q)q (7)

where L and L(q) are the linear and the nonlinear stain matrices rerpectively.
'The second Pio'a-Klrchhoff stress tensor is the energetic conjugate measure to the Green.

Lagrange strain tensr. It is related to the strain tensor by the constitutive equation

Here Hqkt represents the material constitltive tensor and <& is the initial or nominal state of strer
due to the gross body mwothn.

KINEMATICS OF FLF.XIBLE MULTIBODY SYSTEMS

Kinemanc relaons derived so far describe a single flexible body undergoing a large "rigid" body
motion. A closer look at the topological description of a system of rigid and flexible bodies is now
necessary. For Me example tn fig. 3. the positon and orientanon of the framej is described by

r, = r,+r,, (9)

si = s,% o(10)
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Fig. 3 Simple multibody system consisting of a ngid and a flexible body

where re ad Sy denote the tra-lationa vector ad the rotatillonal ensor from the coordinate
framae i to the frame,. Simlalry. the mouon of the coordinate system k tached to the elastic body
is given by the following recursive formula

rk= rj+dj,1)

Sk = SSjk. (12)

In the following only elastic bodies will be considered. Rigid bodies can be treated as a special
case of elastic bodies where the displacement field u is zero. Differentiating eqs (It) and (12)
with respect to time yields the absolute velocities and the absolute accelerations as

Vk = rk = vj+ 6) dik+Ja 0 . (13)

k  + M+ k (14)

a. rk a j+ ;,djk + ' :Vju±+ a, 61d,+,ti0  (15)

a, as 05= er+a,+ , (16)

where the left subscrlpt denotes the ccordinate frame to which the ume deeivation is referred to
Subscripts or superscipts denoting the inertia frame are generally omimed The skew symmetic
tensor 6 of the angular velocity is found as

6,= s, s .  (17)

Consider now a multbody system of p ngid or elastic bodies and h holononic constraints. The

system holds fdegrees of freedom

369 9



and is uniquely described by 6ip - It generalized coordinates y. descrbi ng the ri gid"-body motion
of the flexible bodies, and by nl genealized elasti coordinates q describing the elastic deforina-
dons Let dhe vector of the generlizedcoordinates, denoted byyq I.be written as.

Yq =(19)

For a flexible muldbody system the absolute tranalalional accelerations aj and rotatonal accelera-
lions La . in terms of the -.eneralired coordinates. are:

a, = aJ(Yq. +YIV, (Yq+Yqvt)= (20)

a= ' ay JTJ(yq I)yq + dj(yq yt) (21
5 q

Applying els. (20) and (21) to eq. (15) the acceleration may now be expressed in terms of the gen-
eralIzed coordinates yq as

ak = JrY-JJjq5-, +bki,,k,, (2?)

where the 3Sqiacobian rmatices are denoted by Jr andjR and the vectors of the local accelerati.
ons aie deiaard by d and Er.

3 Dynamics

The equtions of motion for a multibody system with flexible member- are lor a holononsic sys-
tern derived by D'Alembert'n principle,

=Ir~a-)d 8 T W-,-,Id 0 . (23)

The virtual work of the constraint foresn vanishesi

Sr'fc = 0 (24)

Tberefore. only applied foresfa have to be considered in eq. (23)

LINEARIZATION OF THE GENERAL.IZED ELASTIC COORDINATES

Up to tiii point the formulation is nonlinear. Tlie question remaining, therefore, is horv far it is
acecessary to use a nonlinear description to arrive at an accturate and computational efficient model
Linearization of tie elastic deformations within the reference frame, i e assuming only small
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deformations around the undeformed configuration. is a common approach to gain computational
efficiency, e g Shabana (24) Focusing on the virual isork of the internal forces. eq. (23) is written
as

(fSq (L +, (q)) "(HLq +Gn)d
V 

=
R '  25)

with

R = P rltdA - IrT( -f') d V (26)
A V

Neglecting terms of second order in q, eq (25) Is written in a more compact form as

X [6qT(Xzq+K (q)+f5 =R] (27)

The matrices KL and KNL denote the lUna staffCeSs matrix and the geometrc stiffness matrix,
respectiely. The generalized forces related to the actual state of stress are denoted by the vectorfir:

KL JfLrHLdV. (28)
V

KNL J Lf(q)a0dV, (29)
V

fO= fLTCdV (30)

V

The equations given above represent the principle of virual work for a mulubody system with
flexible bodies, lnearzed In the generalized elastic coordinates. It Is important to note, that Kt
represents a first order teim in the dynamical equtions based on kinematical terms of second
order. I e the suain matrix L(q).

TIME-INVARIANT SYSTEM MATRICES

Evaluating all the volume integrals in eq. (27) ts a lengthy process. In order to reduce the compu.
tational burden during simulaton. the integrals are expressed by generalized elastic coordinates
and by system matrices vlch are bme-lnvariant. and, therefore, precomputable. The inertia ten-
sor of a flexible body series as an example to illustrate this process:

1(q) . +rpddV = -JpdV-fiidV-pZdV-pdidV. (31)
V V V V V

Using eqs. (2) and (3) the irtema tensor can be also written m index notation as

371
L.



r 1~ l~ ~ ~(32)

with thse sine-invariant matices 10 and Ch ulhere 10~ represents the constant inertia tensor of
the rigid body, and l th. g

Cp (fgd Cdjh + 'hd'd 30) TvXYC.S,S3,BifpA,,dV' (3

V,

Table I ptesents all volume integrals of eq (27). the corresponding expression in index notation.
and the corresponding tlnte-invariant system matrices. Tie corresponding integrals of the etemnent
shape functions for a Bernoull beam element were derived by Shabana, [241

volume integral index notation FE-torreulation of the time-bnvaniant tytem matrix

jpudV C1 q C,, TMXS ,,kBkipA,,dV'

V I a

fp0rdV C,. - AJbXIJ~BIP~d

V,

10"i"'dV C,, - rTd.hT=ISB. Bkdl'p,rgpdV AV

tprisildV f, , Wj Q C1, -cfcTpII .Bk~h':'~rf~ A,
V V

Table 1 rTine-invanant system matrices

STIFFNESS PROPERTIES

In the following the integrals of eqs (28) to (30) are consideredi in more detail The evaluation of
the finear stiffness maiix KL is straight forward Assuming linear elasticity K~L i derived from
eq. (28) in index notationais

* = ~' dv'(34)
Via ,

Ther issue of the sinificance of t geometric stiffness or stress stiffness ntrsx. especially in
high-tpeed mechanisms, was addressed by various researchers. e g Ukinis (161 and Kane et al
(13). Different mahcds for the computation of the Sstr tiffness matrix have been developed.
e g Ider and Atuouche (10) proposed an explicit stiffness matrsx. which has to be compoted at
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every woe step A more efficient approach is the superpositon method as proposed br Walirapp,
Santos and Ryu (2611261 and by Banerje and Dickens [2][2), Fq (29) indicates that the geometrc
suffness maux is proporoonal to the state of nominal stress wuch again is proportional to the
loads. Assuming the linear theory of elasticity. urnt sras stiffness matces for different load cases
can be precomputed The stress stiffening matix is found as the sum of the individual unet matri-
cos scaled with the actual load at time integration. To evaluate e the undeformed configuration
has to be analysed.i e. q=q = q = 0 For this configuration the state of nominal stress is
quasi-statically equilibrated with the neetia loads and the applied external loads, anu e' is com-
puted from eq. (27) for any time t.

An efficient formlation of the superposition method is obtained using the properties of the
BernoduiH beam Assuming an one-dimensional state of stress and neglecting shear, the consistent
element geometic stiffness malx for a Bernoulli beam element has the form

,,k= JAh MI A10 . idx , =h, (35)

In t4ble 2. the individual stress stiffness matrces are shown for a structure made out of Bernoulli
beam elements with length I and cross section F. The total length of this stralght structure is L.

ind. stress FE-formulasuon of the ome-nvanant
load case stiffness volume integral system matrix for a straight Beroui

mathx KN beam

longitudinal force/j 0(of, - 0 - -7TTBiTG'B'Tq

Itranslational acceleration C
7
(q)J7y1  (

9
(q) s f

O(q )
dV C' - IpFTTtBTJrG(L-c,)dxB'Tq

rotational acceleration C
t
(q)J1y0  C(q) = Ji(q)dV C - 0

v

centrifugal acceleration c(,q)wus (9(q) - 1caq)dV d
0 

- ZpFTTBITjQ'(Lt-c)dxBTqI

Table Z Individual stress stiffness matrices for a straight Bemoull beam

I was pointed out, that kinematic iemss of second order are necessary in order to descibe the
geometric stiffness correctly By comparison, the term 0,5 C(q) Is identified as the one to modify
the global shape lun on in second order. Terms rcepresentuing the geometic stiffness are then
incorporated In the mas mmix and In the vector of the gyroscopic forces.

STANDARD INPUT DATA

A cu-ent ssue in die developmem of software tools for the computer aided analysis of mecham-
cal systems is the data transfer between different programs or modules Within the German
researco project Dynamics of Mulobody Systems an object-oriented data model has been devel-
oped by Oner et al, (18] This allows not only the commumcatlon between different modules of a
complex srftware package, but defines also a clear interface to other programs. Wallrapp 1281
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extended dus object-onented data model to flexible bodies. The basic idea is to collect the ume-

invariant system matcs at a very high abstraction level in a dam model. see table 3.
Through a Taylor expansion of an object M,. c g. a time-nvaat system matrix, in the form

M,,(qn ) _ = +M ,' M~jq n M,',j qnqg + . (36)

linear or nonlinear models of the flexible body, derved either by continuum or by finite element
methods, may be Incorporated in the database. Due to the obJect-of'ented approach the user has
access to such objects as the structure of a matrix expansion. This Is particularly attractive for
symbolic computing. Without Imowing the values of the matrix elements, the structure of a
matrix. e g. diagonal or unit matrix. Is accessible In the data model. The use of such objects may
considerably reduce the overhead for the symbolical generation of the equations of motion. All
Terms describing the elastodynamic behaviour of a flexible body are incorporated In this data
model.

M(q) description dimension computation rle: M,,(q,) - MI Msjq.

matrix of mass times -.
'"'4 positonofcentreofmass Cxl At d M

t 
=C

t

Inertia tensor 3x3 M a -Jp dV MU, -- CA - C' .,

coupling mctrix with nqX
3  ciT M i r7

rotational coordinates O -9-P
CR coupling mautrix with nq x 3 MO - Or C" roIioa coriaes-M C6P.J

Co rotational coordinates iqO AaCS Mt M
* M E  mass matrix of flexible body nxnq * Cxn. MO

gytoscopic matrix for 3xnx3 * -2C4,,
rotational coordinates

gyroscopic matix for At x 2C,
elastic coordinates nq x nq X3l a C,.,

of centrifugal matrix for MM - c" C
0

£ elastic corrdinates 3 x nq x 3 S+ C4fnJ

KE stiffness matrix of flexible body nq X nq M t K,

DE damping mataix of flexible body nq x n. At - aC3 + DKc

Table 3 Computing some of tl'e classes of the standard input data usang a FE.approadh

Equations of motion for flexible multibody systems

Based on the data model the equations of motion can be formulated as

M(yq) Yq(t) + kc(yqyq) + k(q, q) = q1(yqj9Yo) (37)

with the symmetric mass ma t.,
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P
M = I ( J

J=t

JRCR(q)JE + JEc,(q)Jr + J[C(q)J" + J[MrEJa (38)

the Vector Of e geneaized gyroscopic forces.

P
= ( Jmni -Jfmd,(q)a+J i md,(q)+ 2JTsC q)q +Jrda(q)&+JI(q)a+
i-I JRTiI(q)+JRG(q)otq+ JECr(q)a + JTCR(q)+ JETOE(q)D+JrGL(q)mq )j

(39)
the vector of the internal forces.

P
k= ( JK, q+JED q ) (40)

and the vector of the generalized forces

P

qf=7 J~mg+JmiXq)g+JrCT(q)g) +
i-I J

Jl "

In these equations the ma.tix JE represents the Jacobian of the generalized elastic coordinates

J E - a-'q (42)
aYTq

which describes how the vector qi is related to the vector yq

4 Generating semi-symbollcal equation; of motion

The presented formalism is impleme.,ted in a general computer program using the symbolical for-
malism NEWEUL and the computer algebra system MAPLE. Te former is a specialized computer
algebra system designed for the derivation of the equations of motion for mechanical systems with
rigid bodies only NEWEUL has a restricted set of available symbolic operations and is based on
index coding. Scharhlen and Kreuzer (21J. MAPLE is a multipurpose computer algebra program
for minserical and symbolical computation. It is also a programming language supporting proce-
thea' programming, Char et al. (7]. Compared to other computer algebra systems, MAPLE uses the
required memory in a ery economical way. Together with the possibility to generate complete
FORTRAN and C programs, MAPLE is well suted for the development of prototype programs. For
this purpose the lack of computataonal speed, compared to specialized computer algebra systems,
is acceptable.
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MECHANICAL SYSTEM_ _ _

MODEL

frame

elastic body Q

ngid booy

topology structure

F- GENERATION OF THE EQUATIONS OF MOTION

symbol manipulationFEpprcto

semi-ymboicalstandardized
equations of motion object-onerited data model

SIMULATION - VISUALIZATION

Fig 4 Scliemne of a dynamical analysis of flexable mechanical systems

tBased on the kinsematical relations of te flexible mechtanical system generated by N EWWIL te
equations of motion are generated in a setni-symbolical form uising MAPLE as a symsbolical
asacisne Tiar tertalnology senu -symbolical was used. since not all symbolicad' terms can be traced
back to input variables. Such terms are for example the classes of Ste data model. lb avoid unne-
ezztryoperatiori. Use ob t struc.ur f anmasrtulsuuilized to defteeclsses ofdtedat mcdIt
in erich a way that zero-ooeraon are eliminated as son as possible. Sensl-symnbolcal terms can
not be interpreted easly in a phsict way, but they lead to a computationasly efficient formulation
overcoming the restriction to certain types of models for the elastic body In order to keep trnn
expressions in a compact form, repeated strings of symbols have to be replaced by substitution
variables This can he realized either by assigning thes strings to ait arbitrary substitution variable
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or by replacing them by physically interpretable symbols. A example for such a physical interpret-
able symbol is the expression of the tiard component of them s vector by 01 (3) A very compact
symbolical form of the equations of motion is achieved by using the recursive kinematical formu-
las and replacing the strings recursively This procedure is referred to as recursive compression.

A scheme of a dynamical analysis of flexible mechanical) systems is depicted in fig. 4. The
equations of moaoa are generated by symbol manipulation based on the topological descrpton of
the system. Indepedently a FE-prepmcessor. currently based on Bernoulli beam elements, com-
putes numerically the time-invaiam system matrices and stores them In the data model. These
matrices are read into in the semi-symbolcal equations as a parameter set and the output is a
ready-to-compile FORTRAN code The ordinary differential equations are then integrated using
standard algorithms, se e g. Gear (9) It has to be noted that the modules symbol manipulaiwn,
FE-preprocessor. and ne integration are independent, connected only by a clearly defined data
model, see fig 4.

5 Examples

T\vo examples of flexible mechamsms will be presented the well known example of the rotating
beam and a flexible robot.

ROTATING BEAM

10 m (0.1 radls2
}

(o M, 0 5 10 IS t(s) 20

Fig. 5 Rotating beam and imposed angular veloctiy and acceleration

A slende beam, length 10 es, with at, additional tip mass M, is rotating around a hinge with a
given function of the angular acceleration as. It represents a spin-up manoeuvre starting at time
t = 0 s and ending at T = 15 s reaching at a constant agular velocity s, 6 radls, see fig 5 The
function for the corresponding angle 4(t) is given as:

()(cs--l) for t<T

m,(tT for 1r:
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No gravity acts on the beam and the propertes are as follows, cross section areaA 0.0004 m
2
,a ea m o m n t o f i e a = 2 x l O p

7  
m g

.  
Y n s s m d u lu s E = 7 x O 

" 
) N / m 

2  
a n d m as s d e n s i t

p = 3000 kg/m
j 
Ref (10].U. (m) UY [m)

0,0 1 • -0,2 -

I 0 M y - kg 
My .M 0 kg

o ANSYS o ANSYS

-0,03- presented -0,6- , presented

-0,0 formalism 08]Vformalism0,04- * 0,8 ,o ; 1'
0 S 10 15tt1)20 0 5 10 1S 91s]20

Fig. 6 astic tip displacements; u, and Uy of the rotating beam

Mass matix In symmetric storage mode:
4(1) LT2 (1, 2) 2M+LT2 (2,2) 25 E.el (1., )
H(2 ) LT2(1,2) *LT2(1,3)*HI T2(2.2) *LT2(2,3) *MI ..e 1(1,2)
HO) = LT2(, ..2 -MI+LT2(2,3) 2 M-H+MEe (2, 2)
M (4) * LT2(I,2) *LT2(1.4)*MH1LT2(2.2) *LT2(2,4) -4I.ME.ell1,3)
H(5l) LT2(1,3)*LT2(1,4)'5MlLT2(2,3)*LT2(2, 4) *MI+MEe1(2, 3)
H (6 l) LT2 (1,4 )-*2* I T2 (2,4) -2 M +I.Ie. . 1 (3,3 I

Right hand side.
qe(l) *- LT2(1,2)AQT2(1)*MI-LT2(2,2)*AQT2(2)'lM-

OE-el (1, 3) 01 (3) * *2-GEqpel (1, 3) *01 (3) -KE.. 1 (1, 1) 'q.el.1 -
(LT2 (1, 1) *LT2 (1, 2) -MI.LT2 '2, 1) *LT2 (2, 2) *H14CR.el (1, 3) ) *A1PP

qa(2 = =-LT2(1 .3)*AQT2(1)*HM -LT2(2,3)*A IT2(2 IM -OE-*1 (2, 3) *01 (3) - *2GE_qp-e 1 (2, 3) "o1 (3) -KE-el (2, 2) -q_e 1_2 -

(LT2T1, 11 ILT2(1,3) *Hl,1T2 (2, 1)*LT2 (2,2) *M1 CRel (2,3) ) 'AIPPqe(3) - -LT2 1,4)*AQT2 l1)*MI-LT2(2,4 *AQT2(2 ltM
-

OEe1 (3, 3) *01 (3) --2-GE.qpel 13, 3) o01 (3) -KE.el (3,3) *qe 1_2-

Not tin 2 ( , ) *LT2 (1I, 4) MI .LT2 12, 1 ) "LT2 (2,4) H 1 R _e ;1(3,3) I A1PP

q_el_l: q( ) 01: c3 AIPP ' 0) LT2: J 7 AW 2: a2 - _e1: elastic body I

Table 4 Semni-syboca equations of motion for the rotating beam

tie Ume history of t.e elastic displacements ux and u yof the tip with respect to the undeformed
ste of the beam are shown in fig 4 3ad are compared to the solution obtamned with the raite-ele-
meat code ANSYS 8 A 'ery, good agreement of the solutions was obtained with the presented
formalism The reuction of the model resuted in a strong increase in computatlioal efficiency
Modelling with ANSYS was done using 10 2D.beam elements resulung in a system of sparse (if.
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ferenual equations of dimension 33 For the presented example 2 bending modes and I longitud-
nal mode were selected leading to a very compact system of ordinary dtfferential equanons of
dtrmension 3 The equattons of mouon are presented in fig 4 They have a very compact form and
with the object definitions of table 3 they can be easily interpreted. Additional equations for the
taylor expansion of the data objects. eq. (36), have to be generated. They are omitted in this paper
due to the limited space

FLEXIBLE ROBOT

A planar flexible robot was presented as a benchmark example within the German research project
Dyvmanuc. of Multzbody Systems. see Sorge. Bremer and Pfelffer(25]. Gravity with g = 9 81 rts

2

acts on the robot id material pruperties are chosen as Youngs's modulus E = 7.3x0 N/m
2
,

and mass density p = 2700 kg/rn The postrMtasses are selected as M, = I kg and M, = 3 kg.
Dimensions of the undeformed beams ar for beam 1: x = 0,545 m, y = 0,015 m, z = 0.06 n and
for beam I: x = 0,675 m. y = 0,0! m. z = 0,04 m The functions of the joint angles , and p, are
give .is

-_r/4 for t<O

i1/4 (- I +72t
2

) for O5t< 1/6

91 = i/4(-18t+lOBIt
2

-44r') for I/6 5t< 1/3 (44)

ir/4 (-8 +54t-108t
2

+72 
3

) for 1;3 St< 1/2

,V14 for 1/2 :5t

€2= -02 (45)

Three distinct points have to be calculated. the equilibrum position for t = Os. and the two
exteme points of the vibration a:ound th e librium position for t>O.Ss, see fig. 7

reference soluton presented formalism

lime is) s(m) y (m) time (s) x(m) y (m

0 1.057 .0411 0 1 067 C 410

041 1019 0599 042 1.019 0592

057 1043 0123 057 1046 0123

Table 5 Selected positons tor the robot

Table 5 indieates a good agreement of the soluton obtained by the presented approach with the
reference soluuort, see Sorge, Bremer and Pfelffer[2SJ
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0,6 ,iO.42s

tt M
0,2 £--057'

-0,6

-0,2 0,2 0,6 1 x [in]

Fig. 7 I'lexibte robot

6 Conclusion

Based on fth topological descripuion of a inittibody system with flexible members t equations
of motion weederived in amiimal formo using D'Alensbert't prnciple. System matrices desaib-
ing the etastodynamical behaviour ware derived tor a finite element appoach and the geometric
stiffness matrix is given for the Case of a straight beam. By use of a standardlized Object orientedt
data base it was shown that the presented foremalism can be implemented In a semi-sysibolical
fomm. without restrictions on the type of model used for the elastic tody. The two presented exam-
ples, a rotg beam and a flexible robot. inicajed a good agreement with reference solutions
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Abstract

An approach to the computer aided analysis of flexible multibody sys-
tems using object-oriented programming methods is presented. The aim is to
support the rapid generation of specialized programs by providing an open,
extensible C -+ toolkit. This toolkit contains modules (C++ classes) which al-
low the declaration and manipulation of multibody components such as jcints,
bodies and actuators in an intuitive manner. New components (e.g. new finite
elements) are easily introduced to extend the toolkit. The equations of motion
for a multibody system consisting of these componente are formulated by di.
rect application of the principle of virtual work using symbolic techniques. It is
possible to use absolute as well as relative coordinates in a problem-dependent
manner.

1 Introduction

Mvhods for the computer-aided analysis of multibody systems have reached a high
I -e0 of maturity and are being increasingly applied to real-world problems in vari-
ous sectors of industry. Powerful programs such as ADAMS, DADS, MECANO and
COMPAMM have established themselves as standard tools within a CAE environ-
ment and are being rapidly enhanced to meet user needs.

While such programs, with sophisticated graphical user interfaces and links to
other analysis tools and CAD programs, are well suited to the industrial context,
research in multibody methods also requires a kind of programming environment in
which rapid experimentation is possible. Such experimentation, which might ;nvolve
using completely different methods for formulating equations, comparing - arent
formulations for a new component or testing new numerical solution procedures,
is not easy with existing programs and conventional programming techniques. A
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possible alternative lies in the use of object-ortented programming to create toohLis
from which researchers can rapidly g~aerate customized programs.

One such approach to applying object-oriented programming techniques to the
analysis of multibody systems (see (Sorge, 1992, Kecskemithy, 1993j for other recent
work) will be presented in the following. The primary aim is to create a framework
within which different types of coordinates and various forms of equations may be
experimented with. No attempt is made to formulate a multi-purpose program, but
as will be shown, the resulting toolkit allows formulation of specialized simulation
programs at the same level of abstrzction as most input languages for multibody
programs. The theoretical background is described in Section 2 and fundamental
aspects in the design of the toolkit are discussed in Section 3. A key element in
the present approach is the combination of symbolical and numerical computations
in a set of classes for mathematical quantities introduced in Section 4. Based on
these mathematical classes one can define abstractions for the elem-nts of multibody
systems as described in Section 5. The assembly of a complete miltibody system
model from such elements is demonstrated in Section 6 and the application of various
analysis procedures to such a model is shown in Section 7.

2 Theoretical background

A distinctive feature of multibody dynamics is that no single method has established
itself in the same way as the finite element method in structural dynamics. In the
following, the major current approaches or "formalisms" will be briefly reviewed,
focussing on the type of coordinates used and the computational tasks arising from
assembly of the dynamical equations of motioni.

In the absolute-coordinate or cariesian-coordinate approach (see e.g. [Nikravesh,
19871), a translation vector r and some rotation parameters 8 are introduced to in-
dependently describe the motion of one or more reference frames on each body and
are collected in the vector of geteralized coordinates q of the multibody system. The
system's vector of generalized forces Q is composed of the translational force f and
a torque t applied to the various reference frames. Here and in the following, we as-
sume that forces also include inertial forces unless otherwise stated. The generalized
forces are easily formulated by additively accumulating contributions from dynamic
elements such as bodies, springs etc. Joints are modelled with constraint equations,
which are simply concatenated to form the multibody system's constraint equations
g(q) = 0 Dynamic equilibrium is defined by equating the generalized forces Q with
constraint forces GTA, which are formulated with the help of Lagrange multipliers A
and the constraint Jacobian G For the solution of the equations arising in kinemat-
ical and d) namical analysis one also requires the mass and stiffness matrices and the

iThe so-called 'recursive" methods, such as those of [Featherstone, 1987, Bae and Haug, 19871
are not considered here, au their unique combination of equation formulation and equation solution
put them in a category of their own
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Jacobian of the constraints in sparse form. All these operations can be performed
numerically and are easy to automatize, so tb-t this is the method of choice for most
large commercial multibody program packages.

To avoid the large number of coordinates and constraint equations arising in the
absolute-coordinate approach, the rdatsve-coord:nate or joint-coordmate approach
(see e g. [Wittenburg, 19771) uses natural joint coordinates as the generalized co-
ordinates q. The motion of reference frames is now expressed in terms of these
joint coordinates by formulating the functions r(q) and R(q) for translation and
rotation. Formulation of the generalized forces Q is more involved than in the
absolute-coordinate approach, as a force or torque applied to a reference frame may
make a contribution to any number of components of the generalized forces. Nu-
merous methods have been developed for this purpose, based on diverse mechanical
principles such as Lagrange's equations of the second kind, Kane's equations or the
principle of D'Alembert. In all these methods the crucial step is to accumulate
projections Jrf and Jrt of forces and torques acting on reference franes, using
Jacobians or "velocity transformations" J, and JR of the translation and rotation
of these fraimes Kinematical loops are handled by setting up constraint equations in
the joint coordinates, which are concatenated to form the multibody system's con-
straint equations g(q) = 0. Dynanuc equilibrium is defined in the same way as for
the absolute-coordinate method by equating the generalized forces with constraint
forces. The implementation of the joint-coordinate approach requires some sort of
topological analysis of the system to identify kinematical loops and formulate the
motion of all reference frames. During kinematic and dynamic analysis, first the
position and velocity of all reference frames has to be evaluated, followed by compu-
tation of absolute forces and constraint equations. The accumulation of generalized
forces then proceeds according to specialized algorithms generally involving recursive
evaluation of the Jacobians J, and JR or recursive application of their transpose,
(see [Kecskemithy, 1993) for a review). Evaluation of the mass matrix and the
constraint Jacobian is quite complex and very few algorithms permit evaluation of
stiffness matrices

The minimal-coordinate approach of [Hiller and Kecskemithy, 1989] is a form of
the joint-coordinate approach specialized to systems with multiple kinematical loops,
in which all constraints arising from the kinematical loops are solved in closed form
for one or more joint coordinates in each loop. Only the remaining joint coordinates
are included in the vector of generalized coordinates q. Since no constraint equations
or Lagrange-multipliers occur, the number of coordinates and equations is minimal,
but the formulation of the closed-form solutions further adds to the complexity

inherent in joint-coordinate approaches. A fully automatic implementation of the
method is extremely challenging, but a semi-automatic implementation in the form
of a C++ toolkit is described in [Kecskemithy, 1993].

Each of these three approaches has its advantages and disadvantages, so that
a combined approach seems promising, in which a suitable combination of differ-
ent coordinate-types can be used to take advantage of the special structure of each
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of the joint-coordinate approach. as the underlying mechanical principles in general
!!permiut the use of any other type of coordinates, including absolute coordinate. New

aspects arising in such an exte nsion of the joint-coordinate approach are the special

treatment of finite rotations (which rarely occur as , int coordinates), generaliza.
t:on of algorithm for the efficient evaluation of generalized forces and exploitation

of sparsity. The present approach attempts this extension of the joint-coordinatei method and has the following distinctive feature:

a Coordinates of any kind are allowed, e.g. joint coordinates, cartesian coordi-
nates, strain measures etc., but a distinction is made between a "position" and
"velocity " representation to support the use of parameters of finite rotations
(see Section 5.1).

Dynamic elements are formulated in a coordnate-independent fashion to sup-
ply the virtual work of a generalized applied force (see Section 5.3), e.g a
translational force, torque or even a stress measure performing virtual work
against a corresponding virtual strain measure.

*Assembly of a multibody system and its equations is based on the applica-
tion of symbolic techniques (see Section 3 and 4), which obviates the need
for specialized algorithms to attain efficiency and also permits exploitation of
sparsity.

* Computational procedures fbr the analysis of the multibody system (see Section
7) are based on a special model of numerical procedures (see Section 4) which
permits different analysis procedures to be combined.

3 Design of the multibody toolkit

In this section the basic design of a toolkit for analysis of multibody systems in the
object-oriented programming language C++ [Stroustrup, 1991] will be discussed. A
discussion of object-oriented programming as such and its advantages with respect to
other programming paradigms is not possible here (see e g. [Stroustrup, 1988, Booth,
19911), also a familiarity with the basic concepts of C++ is assumed.

Objet-cricnted programming is, far more than conventional procedural program-
ming a de go task and the key element of "object-oriented design" [Booch, 1991]
is the identi. ,:tion of classes as abstractions of entities in the problem domain and
the definiticr of the behaviour of these classes. Here, the problem domain is the
analysis of multibody systems and it is natural to try to encapsulate components
of multibody systems such as joints, bodies, forces and constraints as classes. In
general (see [Sorge, 1992, Kecskemithy, 1993]) this involves defining a lower level of
classes for standard mathematical objects such as scalars, vectors and matrices and
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characterizing the behaviour of components of multibody systems by certain typical
computations with such mathematical objects Considenng the differet fo.ma!sms
discussed in Section 2 it is immediately obvious that different formalisms require dif-
ferent computations, e g. in the absolute-coordinate approach a joint must compute
ts constraint equations, while in the joint-coordinate approach it must be able to

compute the motion of the outboard reference frame.
We -nay say that different formnalsms imply different abstractions and this ap-

plies to an even greater extent to the treatment of the multibody system as a whole,
where every formalism requires its own global data structures, leading to completely
ifferent representations of a multibody system as a class. The absolute-coordinate

approach essentially requires simple mappings between quantities such as state van-
ables and forces in the components of the multibody system and the corresponding
composite quantities in the multibody system While the order in which computa-
tion are performed is of little importance in the absolute-coordinate approach, the
joint-coordinate approach requires recursive computation of the motion of reference
frames and of the Jacobians or velocity transformations, generally involving some
form of "tree" or "graph" data structure.

Trying to encapsulate such diverse abstractions of multibody systems as a col-
lection of unrelated classes is a tedious task unless one recognizes that the different
concepts have much in common: one is always dealing with scalar, vector and matrix
functions and their derivatives. It should also be kept in mind that such standard
numerical procedures as solution of linear and nonlinear equations and numerical
integration require some representation of vector-valued functions and their partial
derivatives, preferably as sparse matrix-valued functions.

Such considerations have led to the development of a C++ toolkit for multi-
body systems in which the main emphasis is on the design and implementation of
mathematical operations This resulting toolkit has the following structure:

e A module for symbolical and numerical mathematics defines differentiable
scalar, vector and matrix functions. Such functions can be defined as ex-
pressions in a syntax very close to standard mathematical notation and an
important feature is the assembly of composite vec'ors or "hypervectors" to
represent product spaces.
General numerical procedures are defined in an abstract sense in terms of such

functions, exploiting the ability to automatically formulate exact derivatives
of scalars and vectors as vector and matrix functions (as sparse block-oriented
matrices or "hypermatrices" in the case of hypervecLors), respectively

* Kinematic elements such as joints and constraints recursively formulate func-
tions of state variables using the facilities for expression formation.

A; * Dynamic elements formulate the virtual work of generalized forces against vir-
tual displacements as a real-valued functional and the constraints formulate a
virtual work of constraint forces.

"o I
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9 A multibody system assembles sectors such as state variables and constraint
functions and accumulates virtual work from its components Generalized
forces are formulated by partial differentiation of the virtual work and system
matrices such as the mass matrix, stiffness matrix an ' constraint Jacobians are
formulated by partial differentiation of the generalized forces and the constraint
functio..

* Analysis procedures for multibody systems are simply derived from classes for
general numerical procedures and essentially extract the appropriate function
to solve and the vector to solve for from the multibody system.

Further details on these components of the toolkit will be given in the following
sections.

4 Numerical and symbolical computations
The classes for scalar, vector and matrix operations mentioned in the previous sec-
tion will be introduced "by example", focussing on the classes for vector functions
derived from the base class

2 
Rn, but the design of classes for scalar functions and

matrix functions (derived from R1 and Rman) is similar. Rn is an abstract base class
specifying properties common to all vector functions (or simply "vectors") and sub-
classes specialize Rn to specific vector functions. In the simplest case we have the
subclass Vec to represent independent vectors which can be declared just like an
integer or real number with statements like

RVec x (3, 0); II x - (0, 0, 0)
RVec y (x);
RVe. z x);

Vector functions are generally the result of expression formation as in

Rnk a,- x + y;
Rn& b = x % y;

for the sum and cross product of vectors. Here, the application of the operator "+"
to two vectors internally generates an object of the "expression class" RnPlusRn. It
must be stressed that this sum object is not the (constant) value of the sum at the
point of declaration but represents a function mapping the values of the two operands
to the value of the sum at any time. For this RuPlusRn and other expression classes
store references to the operands for later use. Note that no numerical operations are
performed at the time of expression formation: numerical operations are performed
during subsequent evaluation of the function, e.g. when its value is required for
evaluation of another expression or if it is to be printed as in

ITypewriter font wll be used in the following for program symbols and code
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cnUt << a;

An important feature of evaluation is value caching, s e on subsequent evalua-
tions a stored ("cached') value is used until an operand changes in value. Thus, if
immediately after the evaluation due to printing shown above we assign

z - a; // Assignment only'

the sum is not reevaluated, but 'f we ass-, n to one of its operands as in

it X ; 1

the expression a is notified of this change and

z - a; // Evaluation followed by assignment'

forces a reevaluation Value caching is exploited by the mechanism of common subex-
pression elimination, which guarantees that whenever a subexpression equivalent to
an existing one is formed, the new ("common") subexpression is eliminated and the

& existing subexpression is reused Thus

lRat c- z % (x+ y);

reuses a and on evaluation of c, the cached value of a is used. In addition, certain
expression simplifications are built into expression formation, e g. the cross product
of a vector with itself creates a "zero vector" or ZeroRn and use of this ZeroRn in
subsequent expressions results in its elimination.

Expression formation can proceed recursively to any level of complexity, leading
to the formation of large numbers ol expression objects linked to one another la the
form of "expression trees". By virtue of expression simplification, common subfx-
pression elimination and value caching, these expression trees automatically ac,
most of the optimizations typically found in specialized m',ltibody algorithms, so
that the need for such algorithms practically vanishes.

f- Another important operation is symbolic differentiation, whch allows the formu-
lation of exact derivatives of a vector function with respect to on,- of its operands as
in

Itaint da.z - a.d (x);

and makes the formulation of multibody system matrices such as Jacobians, mass
matrices and stiffness matrices by hand unnecessary.

While expression formation and differentiation as described till now is appropriate
for small to medium vectors and implicitly assumes lull matrices, the class Hyperlin
defines 'hypervectors" composed of elementary vectors and HyperRmxn represents
"hypermatrices', which are sparse matrices with elementary matrices as elements.
HyperRus are used in the formation of product spaces from elementary vector func-
tions as in
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HyperRn q;

q.append (x);
q.append (y);

but are also generated as the gradient of scalar functions with respect to a HyperR

as in

Rik s =
HyperPtnk ds.x - s.d (q);

Similarly, Hyperltmans may be manually constructed but are more often created
automatically as the derivative of an HyperRu with respect to another Hyperln as in

HyperRu f;
f.append (a);

f.append (b);

HyperRxi. df.q - f.d (q);,

These operations are the basis for the assembly of multibody systems from their
components (see Section 6)

It is interesting to compare this object-oriented implementation of basic mathe-
matical operations with programming environments for numerical mathematic such
as Matlab or MATRIXX and systems for symbolical mathematics like Mathematica

and Maple. Clearly, the toolkit implemented here does not attain the power of
these commerical programs in most areas, but the peculiar combiuation of symbol-

ical and numerical operations is particularly suited to multibody system analysis

Thus, the ability to form partial derivatives and easily create composite vectors and

matries is required for the assembly of multibody systems and the combination of
common subexpression elimination with value caching to enable efficient numerical
evaluation was motivated by well-known algorithms to compute generalized forces

and Jacobians.

A further benefit of this synthesis of symbolical and numerical mathematics be-

comes obvious in the object-oriented model of numerical solution procedures adopted

here: a numerical solution procedure or "solver" is considered to be a constraint on
an existing independent vector, and forces this vector to behave as the solution func-

tion of some numerical problem. An abstract base class RnSolver implements the
basic mechanism involving close cooperation between the sol eer object and the solu-

tion vector, and a "solver class" derived from RnSolver defines a particular solution
method for a certain numerical poblem. For instance, the solution of no-ilinear equa-

tions by Newton's method is implemented in the class RnNevtsn and the solution of
equations f - 0 for the vector q may be declared with

RnNewton q .solver (q, f),

The solver object q-solver cannot be manipulated or accessed in any way, but

-s lcng as it exists the actual iterative process to firm the solution in q will be
utomatically activated whenever q is evaluated, e g. when we print it with

390

V ~-~-



cout << q,

A modified form of value caching is implemented to recompute the solution only
whe some parameter influencing f changes. In addition, one may formulate the

sensitivity c. the soluticn with respect to such a parameter by differentiating the
constrained vector q. Numerical procedures implemented in this style include the
solution of linear equations and numerical integration of ordinary differential equa-
tions and differential-algebraic equations.

5 Elements of multibody systems

In the following subsections the formulation of various components of multibody
systems based on the mathematical operations introduced in the previous section
will be described. First, state variables are introduced, which are used in Jnematic
elements to formulate kinematical quantities s-.ch as the motion of reference frames.
Based on the kinematics, dynamic elements formulate the virtual work of various
kinds of forces and constraints formulate constraint equations.

5.1 State variables
State variables represent generalized coordinates that determine the state of a multi-
body system. They consist of the following components: position variables p, veloc.
ity variables v, their time derivatives p and ii, virtual displacements bp and velocity
functions p'(p,v), V'(p, j) to transform between p and v. In the following, we wind
use the symbol q for such state variables.

Distinguishing between position and velocity variables simplifies the definition
of state variables to describe rotations, as we can use any parametrization (e.g.
Euler-parameters) for the position variables while using angular velocity for the
velocity variables. In this case a transformation is required between angular velocity
and the time derivatives of the Euler-parameters and for this reason the velocity
functions p' and V' are introduced. The virtual displacements bp are required for
the formulation of virtual work in dynamic elements and are independent vectors in
the same space as the velocity variables. Thus, e.g. the virtual displacement of a state
variable describing a finite rotation is a differential rotation vector corresponding to
the angular velocity.

The implementation of state variables is straightforward: the class State has
components for p, v, P, s, 6p, I' and v', but tc support compositios of state
variables, these components are HyperRns, which must be assembled by cubclasses
of State. Composition of state variables is implemented in State in the obvious
way as concatenation of the Hyperlt components.
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5.2 Kinematic elements

State variables are used in kinematoic elements to formulate functions describing
the motion of the multibody system. A central role is played by rigid-body motion
between refrence frames. Within the present approach, a reference frame (or simply
'frame) is directly identified with a rigid-body motion. This motion may be relative
to an inertial reference frame or any other reference frame, so that ;t may describe
an absolute cr relative motion, depending on the context. The rigid body motion
is described as usual by a translation r and a rotation R, translational and angular
velocity a and w and translational and angular acceleration a and a, further, we
introduce translational and angular virtual displacements 6r and 6R. It is assumed
that all these vectors are represented in some unspecified global coordinate system,
but we also consider a local or body-fixed coordinate system rotated by the frame's
rotation R and sometimes use representations in this coordinate system.

A frame is represented by the class Frame which stores a reference to an Rain for
R and references to Rns corresponding to r. v, &j. a, br and bR represented in the
global and body-fixed coordinate system. Frame defines "multiplication' of Frames
for the result of two successive motions and "transposition" for reversed motions.
For given Frames X-1 and L2 we could thus write

Frane X-3 = X-1 * X-2; // X-2 folloved by Xl
Frae X_4 X_l; / Inverse of XI

While frames represent rigid-body motions in their most general forr., it is gener-
ally more convenient to form rigid-body motions from specialized elementary frames
which formulate subgroups of rigid-body motion in terms of joint coordinates. Such
elementary frames will be calle 'links" and are represented by subclasses of Frame
such as RevLink for the rotation about an axis and PrismLink for the translation
along an axis.

While neither frames nor links are associated with any state variable, a "joint"
is considered here to be a link with an associated state variable used as joint coordi-
nate. Thus, e.g. a RevJoint derived from a RevLxnk includes a state variable of the
dimension I and Node which is directly d..ived from Frame uses a state variable of
dimension 6 to formulate a general rigid-body motion.

5.3 Dynamic elements

Dynamic elements are those components of a multibody system which generate ap-
plied forces. In the present approach we demand that dynamic elements actually
formulate a virtual work 6W as a real-valued functional. This not only enables the
projection of applied forces onto generalized forces in a simple manner (see Section
6) but also accomodates non-standard types of forces such as stress measures Typ-
ically, formulation of virtual work will make use of kinematic elements such as the
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frame of the centre of n.ss of a rid body or the frames of te ends of a beam ele-
meot. The virtual %ork will also generally involve parameters specific to the dynamic
element such as the mass and inertia tensor of a rigid body.

The class D=aic is the base class for representations of dynamic elements. It
stores references to Ris for the virtual work 6W and for kinetic and potential energy
K and U. which are provided for diagnostic purposes. Simple subclasses cf Dynanic
are Force and Torque for a ringle applied force and torque. RigidBndy for rigid
bodies, Li.Sprig and LnTorsxcn for translational aad rotational spring-damper
actuators. More complex classes are Beam for a nonlinear beam element based on
[Simo, 1985] and SuperEleaent for a superelement comparable to those described
in [Cardona and Giradin. 19911. The implementation of Beam will be presented in
the oral presentation to illustrate the ease with which new dynamic elements can be
introduced.

5.4 Constraints

The joints of a multibody system, may also be modelled as constrantns. This is nec-
essary when the system contains kinematical loops, but may even be beneficial for
systems without loops, to reduce the coupling within the system model (see Sec-
tion 6). Constraints place restrictions on state variables by formulating constraint
functions which have to be zero. The constraint functions consist of position con-
straint functions g, velocity constraint functions j, acceleration constraint functions
§ and virtual displacement constraint functions 6g and are generally formulated
with respect to two reference frames. A Lagrange-multiplier A is associated with
each constraint and a virtual work of the constraint forces is formulated as -Sg -A
In the following we will wnte g for the position constraint function or the whole
constraint, depending on context.

The components of Constraint must be assembled in subclasses and such sub-
classes of Constraint have been defined for all standard joint types. These subclasses
include elementary constraints such as SpherCunstraint for spherical joints as well
as composite constraints such as RevConstraint, which models the constraints of
a revolute joint by composition of a SpherConstraint and two DotConstraints
(see e g. [Nikravesh, 1987]). For this purpose, Constraxnt defines a composition of
constraints similar to the composition of States.

In most cases, constraints will be used to take into account kinematical loops,
but in some cases it is possible to solve such loop-closure constraints for the joint-
coordinates of particular joints in the loop. Several such closed-form solutions, based
on the method of [Woernle, 19881, have been implemented here in the form of spe-
cial links. These 'solver links' may be viewed as kinematically driven joint!, the
joint-coordinates being driven in such a way that the loop-closure constraints are
identically satisfied. E.g. a LengthRsvSolver is a kind of revolute joint driven in
such a way that a length-constraint :s satisfed.
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6 Assembly of multibody systems

A multibody system is considered to have its own state variables q, virtual work 6W
and constraint 9. Thus, a multibody system is treated as a combination of state
variables, dynamic elements and constraints and in fact the class System is derived
from State, Dynamic and Constraint. The multibody system is thought to start
out empty, without state variables or constraints, and a zero virtual work. One then
adds state variables (which are appended to q), dynamic elements (which are added
to 6W) and constraints (which are appended to g and added to 6W). In the class
System these operations are easily defined in terms of the composition operations
already defined in State, Dynamic and Constraint.

The main purpose of System is to formulate various vector and matrix functions
required by analysis procedures. The most important of these are the generalized
forces, now termed f. Their formulation is based on the fact that the virtual work
6W is known to be a linear functional of the form

MWim , ,A, 6P) = M~i, -,P, A) -6P. (I

While the generalized forces f in this functional are not available in explicit form,
they can be easily extracted with the help of the following partial differentiation:

f aW (2)

Within System this operation is performed by symbolic differentiation of the I
6W with respect to the HyperRn 6p and by virtue of the optimizations implemented
in expression formation, the resulting Hyperlto f will allow efficient numerical eval-
uation for &ny kind of state variable.

The generalized forces f depend on the acceleration i, velocity v, position p,
and, if the niultibody system model contains constraints, the Lagrange-multipliers
A. Various analysis procedures require partial derivatives of the generalized forces,
and System formulates the mass matrix M, damping matrix D and stiffness matrix
K as HyperRa&=s by symbolic differentiation of f according to

Of of ___

M=-, D=-, K=af (3)

Similarly, the Jacobian matrice of the constraint equations are required. Here we
assume that O O9 g (4)

and therefore System formulates only

G" G 0
L (5)

' 9 tOv
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Finally, partial dcivatives of the velocity functions (see Section 5.1)

P =LP; ' V=- (6)

are provided.
An important feature of the current approach is that the formulation of genet-

alized forces and other functions required by analysis procedures (see Equation (2)
to Equation (6)) is independent of the type of coordinates used, once the multi-
body system Las been assembled. Note also that many of the quantities formulated
here are not available in existing approaches, e.g. the stiffness and damping matri-
ces are almost never available in closed form in the current implementations of the
joint-coordinate approach

For a given mechanical system, assembly of a multibody system model within
the present approach actually proceeds in several steps.

f I Definition of links and joints. Most state variables will also be created in this

step as part of joints or nodes.

2. Formulation of the kinematical structure, if necessary, by constructing f:ames

from chains of links or joints. If a closed-form solution of loops is to be at-
tempted, it has to be formulated at this stage.

3. Definition of constraints on the kinematical structure.

4. Definition of dynamic elements based on the kinematical structure.

5. Addition of selected state variables, dynamic elements and constraints to the
multibody system model.

In general, considerable freedom exists in the first three steps, which define the
kinematics On the other hand, the definition of dynamic elements is generally in-

4 dependent of the coordinates used. By adopting a suitable strategy for defining
kinematics it is possible to arrive at models with different kinds of coordinates cor-
responding to the well-known multibody formalisms mentioned in Section 2. This is
briefly described in the following:

Absolute coordinates: For each body we introduce a Node which describes a gen-
eral rigid-body motion with six degrees of freedom, but all joints are modelled
as constraints After adding all the nodes and constraints to the multibody
system, the system will have a large number of coordinates and constraints
On the other hand, the system matrices will be quite sparse, and this sparsity
is preserved in the Hypermzxns formulated here for the system matrices.
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Joint coordinates: We must analyze the system topology to detect loops and par.
tition the joints into -tree joints' and "cut joints'. The tree joints are modelled
with joint classes whereas the cut joints are modelled as constraints. The joints
and constraints are added to the system which will have a medium nu,'.her of

coordinates and constraints (if there were any loops).

Minimal coordinates: We must again detect kinematical loops, but now we must
partition the joints in each loop into "independent joints" and "dependent
joints". The independent joints are modelled with joint classes while the de-
pendent joints are represented by solver links encapsulating closed-form solu-
tions of the loop-closure constraints. Only the independent joints are .cluded
in the multibody system model, so that the number of coordinates is minimal.

Apart from these basic strategies, combinations are also possible, e.g we might
want to solve certain loops in closed from, but selectively use constraints elsewhere
to uncouple the system

As an example, consider the simple four-bar mechanism of Figure 1, which is now
to be modelled according to the strategies outlined above. In each case, the model
will consist of declarations of C++ objects from the classes introduced in this section
and the previous rzrt;ons. In particular, heavy use will be made of expressions of
Fraes (see Section 5.2) to formulate kinematic chains. An inertial reference frame
and certain links corresponding to rigid connections will be used in all cases and are
declared first:

Frame X.0; // Inertial reference frame

PrismLink d (2, 5.0); // Translate along z-axis by 5.0 i
PrismLink a (0, 10.0); // Translate along x-axis by 10.0 i
PrismLink b (1, -10.0);
PrismLink c (2, 2.0),
R t.length - 14.456832; /I The length of the coupler
PrnsmLink t (0, -t.length);
PrismLink half-t (0, -0.5*t.length);

Four-bar with absolute coordinates: We declare nodes for each of the three
moving bodies, and then formulate constraints for the four joints with the following
code

Node N.1; // Bottom of d
Node N.2; // Bottom of c
Node N-3; // Right end of t

Frae X-m N.3 * half.t; /I Centre of t
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Figure 1. Four-bar mechanism.

RevConstraint R-.1 (X-.O, N-1, 0);
PrismConstraint P-2 (X-.. * a * b, X-.2. 1);
UnivConstraint U_.3 (14.2 *c, N-.3, 1, 2);

9SpherCostraint S-.4 (N-.3 * t, N1 d);

System system;
system-add (N-.1);
system.add (N_.2);.
systen.add (N_.3),.

syatem.add (R_ );
systea.add (P-.2),
systes.add (U.3);
system-add (S-.4);

Four-bar with joint coordinates: We cut the loop at the spherical joint S4,
which is modelled as a constraint, and declare RI, P2 and U3 as joints in the following

manner:

RevJoInt R-1 (0);,



PrismJoxnt P.2 (1).
UnxvJoint U.3 (1, 2);,

Frame X-3 - X.O * a * b * P.2 * c * U-3; II Right end of t

Frame X.m - X-3 * halft;

SpherConstrar.t S.4 (X_0 * R1 * d,, X-3 *t),

System system;

system.add (R.1),
system.add (P-2),
system.add (U-3);,

system.add (S_4); f

Four-bar with minimal coordinates: We again cut the loop at S4 , but the loop-
closure constraint is decomposed into a length-constraint and a parallel-constraint
by considersng the characteristic pair S4 - U3 as described in [Woernle, 1988] The
length constraint is solved to determine the translation within the prismatic joint
P2 and the parallel-constraint is solved to determine the angles within the universal
joint Us. Therefore, only R, is declared as an independent joint, while solver links
are formulated for P2 and Us using additional chains of links.

RevJoint R-1 (0);,

Frame X-1 - 'b * -a * R-1 * 4; // Left half of bottom segment

LengthPrismSolver P.2 (X.1, c, t , 1, true);

Frame X.b - -c * P-2 * X.1;, // Bottom segment

ParUnivSolver U-3 (X.r, t, 1, 2);

Frame X-m .X0 * a * b * P.2 * c * U-3 * half.;,

System system;

system.add (R-1);

For the sake of simplicity only one dynamic element, a concentrated mass at-

tached to the centre of the coupler, is consi,,-(ed. It was ignored in the models
above, but a frame X,. was formulated for the centre of mass In all cases the

four-bar can be completed in the following manner

S•10.0;

mI * tt leng-th* .length/12.0,
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PrzsmL nk g (2, 0.0, 0.0, 9.81); // Gravitational acceleration

RIgidBody bouy (Xm, g, 10.0),;

body.I(1,I) = body 1(2,2) - I;,

system.add (body);

t this stage, the models of the four-bar are complete and analysis procedures
can be applied to them, as will be showen in the following section. While the dec.
laration of the models is quite simple and intuitive, it is important to realize that
the declarations are fragments of C++ code that could be compiled and linked to
executable programs.

7 Analysis of multibody systems

Varous analysis procedures can be applied to the models of multibody systems as-
sembled in the previous section. The implementation of the analysis procedures is in
the form of "multibody solver classes" derived from general solver classes introduced
in Section 4, whb,:h implement geueral numerical solution procedures. A multibody
sclv.r specializes a general solver by applying the solution procedure to equations
formulated from a System object as described in the previous section.

Consider forward dynamic analysts as implemented in the class Dyna icSolver.
In forward dynamic analysis we solve the equations

0, (7a)
= 0, (7b)

for the acceleration v and A, where f and i are affine mappings of v and A which
have the form

-f Mv+G,\-f', (8a)

= Gi-i. (8b)

Taking into account Equation (8), Equation (7) actually has the form of a linear
constrained minimization problem and DynamicSolver is derived from a general
solver for this kind of problem, passing it v, A, -f, §, M and G.

To apply DynamicSolver to anyof the models of the previous sections we declare
the solver as

DynamicSolver dynamic.solver (system);

As explained in Section 4, the solution vector, consisting of v and A, now behaves
as a function of any other arguments of f and §, e g. the position and velocity
variables p and v. Thus, to compute accelerations for various states, in the simplest
case we could use code like

¢j
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for(...)

system.qp= S. the state
cout << ,ystam.qd.v, // Print the accelerations

Other mult; jody solver classes implerented in this style are KineaticSolver
for kinematic analysis, StaticSolverfor static equilibrium and kinetostatic analysis,
and ODEIntegratrr or VAEntegrato- for Lumerical integration as described in
[Anantharamn and Hiller, 1991).

An imporant feature of these multibody solver classes is that under certain cir-
cumstances hey can be combined. Thus, suppose we wisL to do forward dynamic
analysis of the four-bar with joint-coordinates, but wish to perform a coordinate par.
titioning in which the joint-coordinates of the P2 and Us are numerically expressed
in terms of the joint coorimate of R, For this purpose we first assemble an aux-
iliary multibody system containing P2, U3 and the constraint for S4 and apply a
KinenaticSolver to it as follows

System aux.system;

aUoxsystem.add (P.2);
aux.system.add (U_3);
aux-systea.add (S.4);

KinematicSolver kinematic-solver (aux.system);,

As a result, the joint-coordinates of P and Us now for all purposes behave as
functions of the joint-coordinate of R, and the constraint for S4 is identically satisfied.
Therefore, we formulate the final multibody system from the rigid body and RI only
and apply a DynamicSolver to it as follows

System system;
system.add (body);,
system.add (R.1);

Dynam-cSolver dynamic.solver (system);

for(...)
{

systesq..p . ; // Set the state
cout << system.qd-v; // Print the independent accelerations
cout << aux-systemqd-v; // Print the dependent accelerations

)

Effectively, we have obtained a system with minimal coordinates using the same
components from which we previously assembled a system with redundant coordi.
nates
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8 Conclusion

An attempt has been made to combine various existing methods for the analysis
of multibody systems within an object-oriented programming environment. The
resulting C++ toolkit can be used to quickly generate simulation programs and to
experiment with various types of coordinates and methodologies. It can also be
easily extended with new components or new analysis procedures.

Abstractions of the various components of multibody systems are implemented
within the toolkit as C++ classes. With these classes It is possible to model a
multibody system in a simple and intuitive manner: frames, links and joints are
declared to describe the kinematical structure, constraints can bs used to restrict
motion and dynamic elements are introducrd to represent applied forces by their
virtual work. A multibody system is assembled from such components and various
analysis procedures can be applied to it with just a few program statements. By
adopting different strategies of modelling the kinematics and using different types
of ccordinates, one can apply either the absolute-coordinate, joint-coordinate, or
minimal-coordinate approach to the same multibody system.

An important feature of the implementation is the combination of symbolical and
numerical computations in a set of classes for mathematical operations. The symbolic
operations greatly simplify the formulation of the higher-level classes for components
of the multibody system, and allow operations on the complete multibody system to
be performed in the same way for all types of coordinates. Thus generalized forces
are formulated by symbolic differentiation of the virtual work with respect to virtual
displacements and symbolic differentiation is also used to automatically formulate
the system matrices in sparse form. On the other hand, by using techniques such as
expression simplification, common subexpression elimination and value-caching one
dutomatically obtains numerical efficiency comparable to that achieved by specialized
algorithms used otherwise.
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OF FLEXIBLE MULTIBODY SYSTEMS

R. LEDESMA and E. BAYO
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ABSTRACT. This paper addresses the problem of end-pono majeciory trcking is flexible, ranltbody sr.-
tems through the use of inverse dynamic. A global Lagrangian approach is employed in formulating ts
system equations of motion. and an utianive procedure ,, ,ipu tos ackmeve enid-poit ousey tracking
in three-dunuennoeal. flexible multibody systes. Each itermen ilves firstly, a recursive inverue
ljnenamtics procedie wherein elastic dtiaeraua ame desinmed at teems of the rigid body werdunstes
id Lgrange lpirscnl.a xli optto fteivrednmcjint sos.n6an
tirdly, a non-recursive forward dynanice analysis wheri generalized cooedais and Lagrange maid-

recisve mthods previously propad. this new imethod lathe most geral s incta sulsle frbt
open-chamin n losed-chain configrations of lbreee-dtreaional nalabody systerns. The algorithm yields
stable. noni-eausl actaias Joint toqes andl assocsied Lagrngep mitpllers doat account for the con-
strint forces between flexible nsaltbody oemponena.

*1. Introduction

The effect of claic deformation on the dynamics of maltibody systems lian been Vigorously Stu.
died during the put thilrty years. In paticular. tie modeling of multibody compoes aU elastic
beams has received considerable anenlion us made evident in te surve papers of Lowest and
Jandrss.'s Enlmars and Ssndor 2 Moli? an more recently by Loewent and Chianas;4 A specific
area of interest with regards to flexible maidbody systems. especially in the aerospace and robot-
irs indsstries. is in controlling the motion of a specified poits in the mulsibody system. In most
came. sthe control objective is to have the e"..-pom ofthe maltibody systemt follow a desired tra-
jectory. Various feedback control strategies for die problem of end-point trajectory tracking have
been prtsposed. and the survey papers of BaluS and Book6 present some of the approaches
advancd by the controls community towards this problem.

Tie problem of end-poin trajectory tracking in flexble multibody systems has led to the
development of computational methods commonly referred to as inverse dytismici, Inverse
dynamics deals witlh the problem of determining the joint actuation that will cams a specified
control point in the flexible multabody system to follow a desired trajectory. The Pioneering work
of Reference 7 on the trajectory control of a single flexible link through inverse dynamics showed

403



FF

that the inverse dynamic torque is non-causal with respect to the end-poins motion. i e, actuation
is reqwed before the end-point has s=red to move as well as after the end-point has stopped.
MoulIn demonstrated that because of the non-mimmum phase character of the inverse dynamcs
for the trajectory tracking problem, the only bounded solution for the inverse dynamc torque has
to be non-causaL Bayo. e:. at,9 extended the inverse dynamics to planar, multiple-link systems

=-.sng an iterative frequency domain approach. The recursive method proposed in that study is
suitable for planar open-chan systems. but requred an ad hoc procedure for planar closed-chain
systems. A time domain inverse dynamics technique based on the non-causal impulse response
funcoi was presented by Bayo and Moulin'

0 
for the single link system, with provisions for

extensioxi to multiple link system. An equivalent time domain approach for a single link arm was
proposed by Kwon and Book

1 
where the non-causality of the computed torque was captured by

dividing the inverse system into causal and arucausal palts. Recently. 2 mor systematic and
mor general non-recursive, frequency domain method for the inverse dynamics of planar multi.
body systems was proposed in Reference 12. This method includes the constraint forces between
the multibody components tn the equations of moton. and the method is found suitable for both
open-cham and clo'ed-chain configurmans of planar multibody systems. ,h effect of Conolis
forces and centrfugl .orces on the rvere dynamics of constrained mechanical systems was
presented by Gofron and 13bat.

The inverse dynmics approach to end-point trajector tracking of oenlm flexible multi-
body systems was recently applied to the three-dimensional problem by Ledesma, et. a ,14 where
a recursive procedure was pmtrsed to simultaneously track a desied end-point trajectory and
minimize motion-induced vibrations hough the combined use of lumped inverse dynamic
torques and distributed piezoelectric stmatos. The recursive procedure requi ed a controlled
motor at each inrmediate revolute jol t and three motors at the ground. This procedure is effec-
tive for open-chain systems, but it is nct valid for closed-chain systems because in such systems,
the number of required control inpt b lss than the number of joints.

In tu raper, we present a general computational approach for the solution of the non-causal
inverse dynamics of three-dimensional, flexible mulsbody systems. that is stitable for both
open-chain and closed-chain configurations. With ths work, we present a methodology that is
suitable for all multibody systems, ranging from the single link casc to three-dimensional systems
with general topologies. The equations of motion are formulated in Section 2 and an iterative
algonth s subsequently developed. Simultuon results for open-chain and closed-chain
configuratons aie presented in Section 3 to demonstrate the validity and accuracy of the method.

2. Problem Formulation

In this section. we derive the governing equatons of motion for a flexible mullibody system by
using a global Lagrangian approach, an develop a solution for the inverse dynamics problem
that is suitable for both open-chain and closed-chain configurauons. Crucial to the success of the
proposed procedure is the use of the correct, non-causal Lagrange multipliers that account for the
constraint forces between flexible multibody components. These Lagrange multipliers are deter-
mined in a forward dynamic analysis, which in tur, require the unknown inverse dynamic actua
nons. Therefore, the proposed solution ts an tterative procedure which converges to the stable.
non-causal inverse dynamic actuauons and the associated Lagrange multpliers.
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Fg. 1: A three-dimensional flexible esultibody system

Consider an n-body flexible muuibody system such as that shown in Fig. I. A typrAl multi-
body component, say body i, is shown in Fig. 1 along with the foatng reference frame associ-
ated with that body. Thet generalized coordinates consist of rigid body cooirdinates Vj which
describe die position And orienrasion of the floasting reference fam aumociased with each multi-
body component, and deformation coordinates Q which describe tihe defornnaton of the flexible
body with respc to its floating reference frame. The rigid body coordinas qj consist of the
Cartesian coordinates R, which describe tho posiuan of the origin of the Bloating reference ftme
assocated with body 1. and a set of Euler parameters 01 which dresrbe dt orientation of dt
Bloating frame. 7br-use of Euler parametes among several choices of orientaton coordinate will
be cxpldined later in the section describing she inverse dynamics solutio procedure. Mhe defor-
mauion from the nominal configuration is assuned to ho small. so doat the different bending and
torsional modes are decoupled. For the sake of compketmu %as we smnlarist in the following
equations the basic kinematic expressions that lead to the general equisosns of motion for flexible

Z multibody systemis. A more detailed fosmulanoss Is found in Reference 15. With the above choice
of coordinates, the position of an arbitrasy point P in body iris given by

r, -R,+A4rs (f

where R, is the locacor. of the origin of the body axes with respect to rhe inertial frame. ul is the
kc~stion of point P with respec to the body axes, and A' is the rotation timisformation matrix
from the body axes to the inertial frame. In the thiree-dimnensionial case. the roation tsmusfoems-

* uortmainx is Aven by

2(e&+e0?41 2%% ~-e%03) 2e8103+ 80t,
2(0e03 - W2  2(eO 5A )2(+~-

where the orteniation coorduite ame represented by four Euler parameters e&. 01. 01, arid 01
which satisfy the following idroriy:
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Thea positon vecr with respect to the body axes tIr. Cal be deComposed 1111

le = U; + ti1 (4)
where uit is the rsition vector of pointP in the isaleformed state with espect to the body axes.
arid u] is the deformation vector ofpoxint P wth respect to the body axes. The deformation vec.
tmr u) cati be expressed in term of the nodal deformations by eing a finise eotax discretiza-
non scheme. hence

u) = N' qt (5)
where R~ is t shape fitoction matrox and Q is the nodal deformation vector. Differeiaing Eq.
(1) with. rset tu ene we obtain the following epeso o h eoiyvco ntrso h
rigid body coordinates anid nodal deformnation cooriae

i4 Av -2 AeE- &+AN, j (6)

where (') represents differestistion, with respect to time- E, is a matrix tha depends linearly otn
the Euler parametets and is given by

r=-01 80 03 -'021

and W is a 3x 3 sw-symoetic marix given by

in hic u~ r~ anu hcoordiinates of the gerenc;point P wtth respect to the body axes

Considering the refereace coordinates 4
T 

= (RT.OT4AJ) as genralized coordinates for the
flexible milltibody system. thim coordinate are not independent because t motion of specific
point; in differese bodies are related according to the type of mechanical joints that ircormeci
them. Moreover, in flexihle mechanical syitems. the deformation of a componenrt affecra the
configuration of adjacent cobmponets. As a coinsequence the interdependence of the generalized
coordinates is expressed by a vector of iinematic cosserarit equanons, such at

1(qt) =O0 (9)
where q it the total vector of system generalized coordinates. is tine. and 40 is t vector of
line~sy indepenoent hotonomnic, constrainit equations. These constraint equations can be fuintier
clasified int:
I rigid body constraints where only ngid body variables are involved in the constraint equa.

conn.
2 joint constrains where both rigid body and defrrman coordinates are included in the con-

straint equattio: and
3 rtieonomic constrira wherein the constraint equations can be explicit ftincions of time at

well as generalized coordinas
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X,

X,

FgI pirof flexible bodie comsected by a spieicijoint

euts tete a fa p "jon hihcnncs thef- bde and jzt oint;

P and Q shown in Fig. 2. The dumncsuat equatiout contepinding to die consuam COD&l
tirnthareqwes points P andQ 0 obe coincidentcan be wiusas

(RI AuA RI +Au.) -. (

We note diat the constraaa equation exiariplified by Eq. (10) forms a set of coupled noninar
talgebraic equxtions iii the rigid body coordinates and deformation coordnats.
kConsidering tile rigid body asid deformation coordines described above as geled coordi-

nates, and following standard procedures in sulibedy dynamics, dhe constrained equations of
motion becoe

t

M(+ C 4 + Kq +0=qTX + Q,(q.) (1

where M. C and K amr the syntan mass. damping and stiffness matrices. respectively. X is the
vect": of Lagrange multipliers ntnociated with the consitrains. Oq is the constract Jacobian
matrix. Q. is the vector of appled exteirnal force&. and Q, is the quadratc velocity vector. Ile
quadratic velocity vector contains the centinfugal force and Coriolis forme that restlt from the
diffeirenuaiion of the kinetic etnergy expression with respect to the generalized coordinte.
Geometic atiffening due to high rotation rates can als be added to the vector Q,.

'-)1 FORWARD DYNAMICS

In a forward dynamic analysts, te ,finding the resulting mouron given die apied joint forme and
* external forces. Eqs (9) and (11) contitute a msixed system of differstsial-algebraic equanints

that have to be integrated simultaneously. As explained in t next aeuon. the Solu113on to the
inverse dynamtics problem requires a forward dynamic analysis withun an iteration process. We



solve the fnrward dynamics problem by using the augmented Lagrangan penalty formulation 16
Applying itne agmened Lagrangian ptalty formulatton to Eqs. (9) and (11) esults in the fol-
lowing equaor

M(qOq+C 4+Kq+,Ts[ +2 IL) + o2] = Q. + Q,(4.q)- 0,T" (12)

where o: ts a diagonal matrix of penalty factors whose elements ate large real numbers that will
assure the satisfaction of constraints, (a and ig arm diagonal matrices represeming the nantral fre-
quencies and damping chatacteristics of the dynamic penalty system associated with the con-
soalos. Values of ain the range 10

3 
< a < 106 provide excellent results when wotlang us double

precsan. The augmented Lagraingan method requires an iteration for the correct value of the
Lagrange multiphe The iterative equation for the Lagrange multipliers is given by

41, = V + a [6 , 2i st -o + ( e10] (13)

The iterative priocexs described by Eq (13) involves only a few addtional operations during each
iteration but it significantly improves the convergence of the forward dynamics solution as com-
pared to the standaid pnalty meshd.

t 6

Tile augmented Lagrangian penalty fonmulatuon has several advantages over the standard algo-
rithms used us solving differenal-algebrarc equanons First, the method obviates the need to
solve a mixed set of diffesenmal-algebraic equations and does t increase the nusber of equa.
tons to account for the constrmnts. Second. this method allows the use of standard uncondmon.
ally stable algorithms without the need of further stabilization techniques to control the violation
of constraints during the integration process Third. the method can handle redundant costramnts
and allows the meuldbody system to undergo singular positions. Fourth. the constraint forces
(Lagrange multipliers) can be obtained as a by-product of the uegranon without having to
itegrate additional equations for them. Finally, the method assures convergence independent of
the penalty values used.

22 INVERSE KINEMATICS AND INVERSE DYNAMICS

Moulh and Bayo 17 showed that because of the non-miimum phase character of the inverse
problem, the unique stable solution is found to be non-causal, * , actuation is required before
the end-point has started to move as well as after the end-point has stopped. These findings have
bern corroborated by Paden and Chen

1
s in their theoretical work on the inversion of nonlinear

non-inummum phase systems such as flexible mulubodies. In addition, the fact that the stable
solution starts at negative time and extends into future time precludes standard time domain
integranon schemes currently available in multbody computer codes from obtaining the proper
inverse soluton. These codes will yield causal results and therefore are valid, in general, for the
forward dynamics only. The integration is of crucial importance us obtaining non-causal solu-
tons, and as previously demonstrated in the planar inverse dynamics problem, the time-
antcipatory effect can be zutomtically obtained by integrating in the frequency domain

9 
or in

the time domain by using the non-causal impulse response function and the bilateral Laplace
transform.

t

A previously proposed solution to the three-dimensional inverse dynamics prblem14 relied on
a pued-free finite element model of a fi-xible beam, and the equation for the inverse dynamics
torque was formulated by imposing the condition that the torionai deformation and the two
tansverse deformations of the free end of each link be zero throughout the mouon "Fus limited
type of model led to a recursive scheme to solve the inverse dynamics of flexible multibody
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systems. and is found suitable for open-chain configurations but not for closed-chain
configurations In this section. we describe an iterative Lagrangian procedue to solve the three-
dimensional inverse dynamics problem for either open-chain or closed-chan topologies Our

overall strategy is to first solve the inverse kinematics problem. i e.. finding the unknown ngid
body coordinates q, and flexible body displacements q/. given the desired end-point coordinates
as explicit funcuos of time. Having determined the correct generalized coordmates and their
time derivatives, the inverse dynamics joint torques can be obtained explicitly from the equations
of motion. Compared to the recursive procedure cited above, this new approach is more sys-
temauc and becomes the only choice when closed-chain systems are encotntered. We model the
elastic lnks under puned-pinned boundary conditiom. Furthermore, since torsional deformations
cause deviations from the nominal configurmon further down thAe chain, we model the elastic link
as fixed with respect to torson at the distal end of the 1 .-,

Our goal then is to fonnulate an inverse kinematics equation that is linearized about the noun.

nal motion, so that the elastic displacements, which am non-causal with respect to the end-poin
motion. can be determined through a flequency domain analysis. This is possible only if the lead-
mg matix of the linearized equatnon is me-mtincsmt and sf the forid term is Fouser
traisforn abl This objectve has been acfreved m the planar case with the usseof referp e coor.
dinates for the ngd body variables to describe the posrion and ooeentaton of the floating fer-
ence firme.1

2

The thre--dimeesional inverse kdnemacs problem pisents sudidonal dt'ficulties not found in
the plantr case. in t he plan def e the pl vor j oinsa a tohque vecors change dm-
cons in ae, so that the et te et vonor. Q h iq (11) bcomes a nonlinear function of the
ngid body or entaon coordinates. To overcome hus difficulty, a proper pa euiizaon of the
ngud body coordina

t
s and proper bases for he joint torques am necessary to aao the stated

objectives join ang thee lmoearzed t vetse kindma equrpo ons. As described lat r th this sec
fon, the desiregd form of the nearzed inem atcs equation is possble if Eul r parameters
are used to describe the ngid body orintaton and if the base torque vector of each mulubody

component i expressed in terms of cmponems along the assoc oeted floasug iferen frame.
A second diffictuty that appears in the o rie ifth.e onal m vetse dynamcs problem i ats the

end-point vibration in the plane defined by the revolute joint amt and the trember axis can not be

controlled by the torque applied at the involute joint. This suggests that additional &=non is
necessary to contol the end-point motion when the mulibody system teaches th "inacessible

oonfigurnon.1 TMus problem has been addressd in Reference 14 wherein one motor at each
intermediate joint and three motors at the ground were proposed to conrtol the end-poit motion
for all possible configurtiuons of a certain cla.ss of open-chain, flexible mulubody systems. 7The
problem of "maccessibilty" in open-chain systems. however. can be completely avoided simply
through a judicious design of the orintation of the joint motors so that end-point vibraton is con-
trollable for all possible oontiguranons. For closed-chain systems, "inaccessible" configurations
do not occur, lience the controllability of the end-point motion is assured without the need for

extra actuation
Consider again the system equations of motion expressed by Eq (II) For a typical multibody

component, say body i, the equatuons of motion can be written in the following partioned form:

t_
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The elent oftems ai n udai eoity force vector corresponding to as iso-
parameric. three-dimensional curved beast finite element ase given in ihe Appendix.

Let us definie T' as the torque vector at the base of body i * whose three components ).j and
xt are parallel toftheassociated floang refeencesr', i 'and t'respectvey.f we use Euler
parameters as the rigid body onentaion coonlinate. the externally applied joint forces Q,1 asso-
ciated with the rigid body rotain of body i can be expressed as

where V is the base torque acting on body iand whose components am parallel to the floating
refeesie aes ssoiatd wth body i; e

T
'* is the vector of joint torques and reaction rmments

transmitted from body i to body 1+1. and whose components are parallel to the floating reference
axes associated with body 1+1; A' and A'+' ate body axes to inertial axes roission transformation
matrices for bodies i and W+. respectively; sod G' is a matrix that maps the denvauv-s of the
Euler parameters descrnbing the oneation of the reference frame of body i so the anyilar velo-
city of ths reference frame, and is given by GI = 2 V. Combining Eq. (15) with the seated set of
equatins in Eq. (14) yields

(G' 1T (11 .(A IT A+'%4t)= nJR k+ rrfl +n41 4) Q+ 0i X -Q,' (16)

If wepre-multiply both sidesofEq(16) by 71 G, and usesthe)dentity,

where 13 is the 3 x 3 identity matix, we can g-et the following result after expansdssg the inertia
matrices and quadratic velocity vectors found in Eq. (16). (the reader is referred to the Appendix
for the expressions for the inertia matsices and quadratic velocity vectors io terms of the tavan-
ants of the moaion):

I G-(d.I J- 6 + 31 ) (

where JI is the 3 x 3 sterua tenisor of body a with respect to the onigin of the floating reference
frame and mseasuired relsuve to this frame, and 3) is the inerta matrix coupling the rigid body
rotation and the classic deformation 7te key to obtaiing a tise-invanant leading matrix, that is
necessaty in tranforming the lsneanized equauons of motion into the freqsency domain, is the
fact that the inertial coupling matis 3) can be decomposed into the sum of a timc-lovanant
matrix and a ltme-vstyleg matrix. i.e.



J1 - +J1, (19)
where J]p and JJ, are the ume-invanant pare and usne-varying pan of JI, respectively This
decomposition is essential to the formulation of the inverse kinematics equations that lead to
noncausal solutions to the nonlinear inversion problem. This is also the reason for selectingEider parameters as ngid body orientaion coordinate over other types of smngulanty-free coordi.
mites such as natural coorthnat=s,

2 
where the decomposition of the inertal coupling matrx into

time-uovanant and time-varying parts is multiplicative rather tam additive as in Eq. (19) Intro-
ducing this decompositon into Eq. (18) results in the following expression for the base torque on
body i'

V, = (A- ]T A, l -V 1 + TJ + JJ, io (20)

where T4 is a torque vector given by

TA+G, m4,s i +1P G- 9'+JJ iiJ+tIG' 0;jA

+-1G' 6- ITJ (G 0' +J1 60) (21)

Considenng the equations of motion assocated wtth the elastic degrees of freedom, the exter-

nally applied force vector due to the joint torques acting on body i can be expressed as

QJp= Nj"' - N7 (A' IT A' *1 , +1 (22)

where Nb and N, are the shape function matrices assoctled with a torq.e vector acting on node

b (base) and at node t (tip) of the finite element mesh, respectively. Coabining Eq. (22) with the
third set of equauons mEq (14) yields the following inverse kanematics equations for body 1:

thif 4) +ef / +k/ kj1 Q s f~q .q.j/.) (23)

where the modified mass manx ts given by

it)l 
= 

ripl - Ni J1 (24)

and the motion-tiduced force vector acting on the elastic degrees of freedom is given by

P' = NJfA'f ATlr l+ T4) - N7 I A't- T" -

+Q -'- X-nsj R ' -n1, eJ ' (25)

The to hfied mass matrix ift is nonsymmemc and it is precisely this nonsymmetry that pro-
duces elastic displacements which are non-causal with respect to the end-point motion when
non-causal techniques ae employed to obtain the proper aversion of the nonlinear, non.
minimom phase systems Furthermore, inspection of Eqs.(23)-(25) shows that the riverse
kinematics equation for body I assumes that the base torque vector *1 is known beforehand.
This suggests some form of recusive algorithm for the Inverse kinematics, a e., finding the elasuc
displacements stantng from the end-point. and proceeding to the base of the multbody system
(mboard direction). This procedure ts straightforward for open-chaun configuratieos. However. for
closed-cham configuratons, we need to take the additional step of cuting . chain as the joint
that ts defined as the end-pont. and then proceed as in the open-chain case. since the conraisunt
forces at the cut are automaucally accounted for by the vector of Lagrange multipliers.

The nonlinear inversion can now be earned out efficiently in the frequency domun since the
leading matrices have been constructed such that they remain constant throughout the motion.
Our strategy is to solve Eq (23) in the frequency domain to obtain the nodal deformation vector
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qf that is non-causal waih respect to the end-pores motion. In the frequency domain, Eq (23) can
be writen as a set of complex equations for a particular frequency o)

tril + - c1 -(26)

where iWj(o) is the Fourer tansform of 4(t) and lP(t) is the Fourer tramform of F'(t). Fq
(26) is based on the assumption that iU (t) and P

j 
(t) are Fourier t'ansforinable This a.surn non

is valid for slewing motions which are from rest to rest. The nodal acceleration vector Z(to) can
be obtained directly from Eq. (26) for each frequency a The leading matrix of Eq (26) is a com-
plex regular matrx that is inverible for all frequecies except for to - 0 However. for to = 0, the
system undergoes a rigd body motion, and the leading matrx will be determined only by ni/!

which is posrtive definite and therefore invertible. We note, however, that the forcing vector on
the right hand side of Eq. (26) depends on the elastic deformations, velocities and accelerations
Therefore. an iterative process is needed to obtain the solution to the differenal equations which
are nonlinear in qJ. We start the iteration process by assuming zero elastic deformanons, veloci-
ses and accelerations for the initial calculation of the forcing vector P(t), and use a successive
subsutiution scheme to converge to the corect solution. Finally, the elastic displacements and
their derivatives in the nine domain may be obtained through the applicanon of the inverse
Fourier transform, e g..

Q(t) =,. Q J(c)e-- do) (27)

Alternately. the computation of the elastic displacements and their derivatives in each iteration
can also be carried out in the time domain through the use of the non-causal unpul a response
funcsion and the bilateral Laplace transform, e g.,

where hj(r) is the non-causal acceleration response vector to an rmpulse applied to the j 4 degree
of freedom and fj (e) is the J'A component of the forcing term on the right hand oide of Eq. (23)
We note that the integration from .- to w is necemary so capture the non-causal effects.

Once the non-causal elastic displacements and their derivatives are known. Eq. (18) can be
used to explicitly compute the non-causial inverse dynamics joit efforts that will move die end
effector according to a de ired trajectory. We note, however, that the joint torques and elastic dis-
placements given by Eqs. (18) and (23), respecuvely, depend on the Lagrange mulapliers and
ngrd body coordinates, which in trum depend on the elastic displacements and the applied torque.
Moreover, the ngid body coordmtes and Lagrange multipliers are different from their nominal
values when the components of the muiibody system are flexible. Therefore, a forward dynamic
analysis is required to obtain an unproved estmate of the generalized coordinates and Lagrange
multipliers. in order to ensure that the iteration process converges to obtain the joint efforts that
will cause the end-effector to follow the desired trajectory, the forward dynamics analysis ir car.
ned out with the addisonal constraint that the coordinates of the end-point follow the destred tra-
jectory. These additional constraints have corresponding Lagrange multipliers wlch act as

correcting terms to the joint efforts that have been previously calculated
To summanze. the procedure for obtinig the inverse dynamics solution for three-

dimensional, flexible mulutbody systems involve the following steps'
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Algorithm:
1. Perform a rigid body inverse dynamic analysis to obtain the nominal

values of the rigid body coordinates q, and Lagrange muluphers ).
2 Solve the inverse kinematics equation in the frequency domain through

Eq (23) or i the une domain through Eq. (28) to obtain the
time-delayed elastic diaplacements and their time derivatives

3 Compute the inverse dynamics joint efforts z using Eq. (18)
4. Perform a forward dynamic analysts using Eqs. (12) and (13j to obtain new

values for the generalized coordinates and Lagrange multipliers.

- Repeat steps 2 through 4 untl convergence in the nverse dynamics
torques is achieved.

lIiit worthwhile to compare the recrsive procedure propoed in Refernce 14 and the algo-

nthm proposed in this paper. The most importmt difference between the two methods is that the
former method assumes that the dependence of rigid body coordinates on the eaic displace.
ments are made negligible through the acuon of control forces so that the rigid body coordinates
take on values corresponding to the nominal motion. This assumption is not made in the pretent
method and consequently, the solution of the inverse kinematics equation of Eq. (23) would
require an iteration for the ngid body coordinates q, as well an the Lagrange multipliers X that
am needed as inputs to the inverse kinematics equation. A consequence of the above asumpton
in the previously proposed recursive procedure is that control inputs were requsred at all inter.
mediate joints in the multibody system. This requirement Is acceptable in open-chain
configuratons. but not practical in closed-chain configurations because the number of system
degrees of freedom is less than the number of joiss in a cosed-chain mulibody system. The
present procedure takes advantage of this fact and allows the analyst to choose a prori which
joints in the multibody system are the control joints. Therefore, the present algorithm is mom
general and more systematic than the previously proposed procedure, although it req res more
computauoinal effort.

3. Simulation Results and Discussion

We present in ths section some results of the numerical mplementation of the procedure dis-
cussed above. First. we apply the procedure proposed in this paper to the inverse dynamics of a

two.lnk, open-chain flexible multibody system undergoing motion un three-dmermonal space,
and compare the results with those obtained by the previously proposed recursive procedure.

1 4

Next, we present some simulauon results of the applicaton of the present procedure to the
inverse dynamics of a closed-chain, flexible mulubody system undergoing three-dimensional
motion.

31 OPEN-CHAINMULTIBODYSYSTEM

The iterative procedure discussed in the preceding section is applieo to the three-dimesional
open-chain flexible mampulator shown un Fig 3. The multbody system is controlled by three
motor. at the base and one motor at the intermediate revolute joit. The desired motion is to have
the end-point remam in the x-xs plane with the X2 coorduae and 1s oordinate of the end-point
following the tirjectones shown in Fig. 4 Gravitational forces ar: neglected. The two links share
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Fig. 3: Two-link. flexible open-chain mullibody system.
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Fig. 4: Nominal end-poimt coordinates of the open-chain system,

the following geometric and material properties:
Length: l0im
Crosssecuion diensios: .0 cm zl 10cm

Tip miss: 0 1kg
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Fig 5: Open-chain rar dynamic torques: (a)joint torque TO; (b)joint toque T3

We perform two sets of computarons for the example considered: 1) using the recursive pro-

cedu proposed in Reference 14; and 2) utsng the iterative procedure proposed in this paper. In
the open-chi t cs each intermediate Joint needs to be c lned. and we therefore expect very
similar reut from both method, Plowg of inverse dynamic join toques needed to uick the
desired aid-poin trajectory am shown in Figs. 5& and 5b. The results obtained f1romth two
methods superimpose hus validating the method proposed in this pip. Plots of the correspond.
log rigid body torques are also shown in the figuem to Illustrate the non-causal namli of the
ieverse dynamic torques. In Pigs. 5a-b. the dashed curves refer to the inverse dynamic torques.
while the solid curves refer to the rigid body torques.

3.2 CLOSED-CHAIN MULTIBODY SYSTEM

Fig. 6 shows a dlosed-chan. three-dimensional flexible multibody system, where the selected
control torques are shown in the figure. Joints 1-4 sre revolute joism while jom 5 is a spherical
joint. The desired end-point (joint 5) tiajectory is a motion in the xr-xs plane wits the x2 coordi-
sate and x3 coordinate of the end-point following the tajectones shown in Fig. 7. As in the
open-chain case. gravitatonal fore are not considered in order to focus or, Jie martal effects on
the dynamics of the system. The four links sham the following geormeuc and material properues:

Lengt 1.O m
Crow secton dimensions: 1.0 c x 1.0 em
Young's modulus: 40 GPa
Shear modulus: 15 GPa
Mass density: 2715 kgIM3i *
Tip mass: 0.1 kg
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Fig 8: Closed-chain inverse dynamic torques: (a) joint torque T2, (b) joint torque T)

The present procedure is applied to the closed-chain system by intoducing a cut at the end.

point (joint 5). thus creating two open-chain systems. The internal constraint sorces exposed by
the cut ae automatically taken into account by the Lagrange multipliers in the equatons of
motion. Figs. Sa and 8b show joint torques T 2 and T3. respectively, that at needed to achueve the
desired end-point trajectory. In these figues, the dashed curves refer to the inverse dynamic
torques obtained by the present procedure, while the solid cut-es refer to the corresponding ngid
body torques. We observe that pre-actuation and post-actuation with respect to end-point motion
are exhibited by the inverse dynamic torques.

4. Conclusion

We have presented a new iterative procedure for determning ft inverse dynamic torques that are
needed for end-point trajectory tracking in three-dunenonal flexible multibody systems An
iterative procedure is necessary because of the itsdependence between the elastc coordinazes.
the ngsd body coordinates and the associated Lagrange multipliers in the system equations of
motion. This procedure is valid for both open-chain and closed-chatn configurations, and differs
from the previously proposed recunve procedures in the sense that the rsgid body coordinates are
not assumed to follow the nominal motion. The conditions for trajectory trackang are now met in
a more general way through the satisfaction of rheonosic constrain conditions. The new method
is shown to yield the same resulti as those obtained with the recsrsive procedures for open-chain
systems with normal link flexibilues and normal rotation rams. For closed-ctian systems, how-
ever, this new method tis the only valid procedure for determining the inverse dynamic torques
since in this case, the number of control torques a smaller than the muber of joints and there-
fore, the recursive methods can not be applied
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Further reseaich is needed to address the problem of simultaneous trajectory tracking and
vibration munmzation of slsre-dtmenstonal. flexible mulubody systems with general topologies
In a fuiture paper, we will address this problem thaiugh the use of redundant actuation in the form
of combined lumped and distributed actuators.
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Appendix

The elements of the mass matix and quadratic velocity force vector an Eq (14) cats be expressed
an terms of the so-called invariants of the motion which need to be computed only once st the
stars of the simulation. For each component of the flexible roelibody system, the sivariants of thet
motion can be expressed by the following integrals:

Z= =su, p dV (Al1)

Z2 = N pdV (A 2)

Z3. s2 U + u ' -U Ztr - 1
Zs.$I i45~( ,~ s)-,u, 1  p dV (A.3)

u,,i4 -iiii (s,2 + 1..)

ZVl'=u,N,pdV, i,J-.2.3 (A 4)

ZY . IN7N, p dv i j = .2 .3  (A 5)

where p is the mans density, V is the volume of the component. N is the shape function matri.
and N, is the J14 tow of the shape function matrx. We observe that the motion invariant Z, is a
measure of the firs: moment of the tirdefotmed component about the body anes. and the mooton
invariant Z) is the arta tensor of the andefuemed component with respect to the boy axes

Cloed-form expressions for the motion myiaants corresponding to the three-dimensional,
Bemoulls-Euler straight beamn element are given in Reference 15. In this paper, however, we use
the vanable-eode, isaparametric. three-dimetutonal curved beamt element developed by Bathe
arid Bolourchi

2t 
to model the flexible links As a result, the motion anvariants; can be expressed in

teem s of integrals wich are eviated numerically through Gaussian quadrature
The components of the mast matrix, expressed an terms of the uranast of the motion ire

given by the following

=05R M 1 (A 6i)

mR9 - A G (A 7)
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mf= A Z2  (A 8

moo=G 1G J=(Z3 +JI+J2] (A 9)

mff =ZI + U +Z 3  
(A 11)

where, in Eq (A 6). m is the total mtass of the component. and the tilde symbol above the vector
in Eq (A.7) refers to the stcew-syntnietnc matrix operator Thec matrices S. .Tc, Ip,. it. anid J2 are
given by'=iZo A2

if (A 13)

/if, (Z? I- ZI; (A 14)

( = +P33)( -P ta -P 3it -P21 11~t +P33)( -P.a (A 15)
P31 -PP32 t+2)

1 [(tqa q qj~q31 2 (A 16)
-q3t -032 (qtt+qaa)

in which

p, = [ZY + Z1') qf ij = 1.2.3 (A 17)

and
q, -cj Zj q(, i, I= .2.3 (A 18)

The quadratic velocity force vectors are given by

Q~R - - A (OaS +2 Z24) (A 19)

Q,e = -2 dT J )+ Jj 4) (A 20)

QI= - 162]J [Z11 + Zj2 + Vj2]T 
- [5)2]* it q1 - [2 Jo)* niut q1 (A 21)

where so is the abtolute angular velocity of the body axcs, whose components are expressed with
respect to the body axes and given by

to G 0 (A22)
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ABSTRACT A multilevel approach to synthesis of planar mechasm, is presented. The approach covers
both structural and dimensional synthesis of planar rigid body mechanisms containing revolutm and
translational joints The synthesis is based on four different criteria. Firstly the type of mechanism is
chosen with z view to get the simplest mechanism that satisfactonly fulfill the r..m"ng three cnrteria
Two of these criteria are formulated as constraints on the kinematnc behavior and the total area occupied
by the mechamsm, respectively The fourth cntens is simply the desired mmunimzaton of the reactive
forcesimoments that appear in the mechanism The desired kinematic behavior is based on a finite number,
typically .. 6, of points in time (positions of the mechanism) where the position and orientation of up to
two output bodies may be prescribed. The constraints on occupied areas are labelled territory constramt,
and formulated as a number of restricted areas (boxes). A synthesis is automaically performed at five
levels At the first level the structure of the mechanism is decided At the second level ntital dimensions
fir the given type of mechanism are found by random checkng At the third level the constraints on the
kneioatic behavior is fulfilled. At the fourth level the terrtory constraints are taken into account and,
finally, at the fifth level the iimunation of reactions is camed out The entire approach has been
impl-mented an a software package SYNMEC that runs on PC's and constittes a way o pertormng the
synthesis of a mechanism, that is general and flexible wtth respect to both the type of mechanism that may
be syrthesized as well as the desired behavier upon which the synthesis is based.

I. Introduction

Whenever motion or power is to be transmitted from one point to another the designer laces a
tor, her of decisions that must be taken it order to get on with the design process:

* mechanical/not mechanical lransmission
. gear./cam./lnkage./combined mechanism

number and type of drivers
- structure

The evaluatton of these decisions can only be done by applying some kind of dimensional
synthests taking into account the different demands and wishes ot the specififc problem Synthesis
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of mechanisms typically involves a number ot criteria of varying nature and complexity There
are however, three types ot criteria that almost always can be Identified i practical examples

kinematic behavior
•surroundings
dynamic behavior

Since the original work by Fox and Willmert 121 on mechanism synthesis using minimization
techniques much attention has been paid to problems whith both kinematic ann :ynamtc behavior
as criteria, e g. [1) and 151. In the current work a procedure for synthesis ot mechanisms is
presented that take into account all three types of criteria Also some of the decision making is
covered. The approach is inspired by the work by Garrett and Hall (31 that used random search
as part of the synthesis procedure and the work by Soni et. al [61 where the mechanism type is
decided on the basis of the desired behavior of the output body
The presented approach should be thought of as a tool that, on the basis of prescribed constraints

on the kinematic behavior and the surroundings, returns a number of simple planar mechanisms
with optimized dynamic behavior that act as support to the designer in deciding whether to use
mechanisms and if so which one to pick. The types of mechanisms that are taken into account
have one independent input and only contain lower pair juints. Hence, prior to using the
procedure, the designer must choose to spend time investigating whether mechanical transmision
in the shape of planar linkage mechamsms with these characteristics is a useful solution to the
problem at hand.

The basic idea of the presented procedure is the multi level approach. The input is the
constraints on the kinematic behavior (prescribed motion for one or two output bodies) and the
territory constraints (restricted areas) A total of five levels are recognized. At the first level the
structure of the mechanism is decided based on the number of output bodies and the type of
motion prescribed. At the second level initial dimensions for the given type of mechanism are
found by random checking. This level is also only based on the prescribed kinematic behavior
At the thid level the constraints on the kinematic behavior is fulfilled exactly by minimization
At the fourth level the territory constraints are fulfilled and, finally, at the fifth level the
minimization of reactions (optimization of dynamic behavior) is carried out.
The entire method has been implemented in a computer program SYNMEC and frequently is
the remaining paper references will be made to the default settings in SYNMEC that influence
the automated perfomance of the synthesis

2. Synthesis Input

In order to perform any synthesis it is necessary with some input representing the task to be
carried out. In the current work the desired kinematic behavior as well as the territory constraints
(restricted areas) are required.
The kinematic behavior is the basis of any mechanism synthesis. It corresponds to the motion

of the output body(tes) of the mechanism and it is always prescribed in some way, often as a
function of the motion of the input body(ies) Classically this prescribed/desired kinematic
behavior is discrettzed into a relatively limited number (here I 6) of points in time where
positions and/or rotations of output and/or input bodies are of significance to the functionality
o the mechanism These points in time will be referred to as positions or s)nthesis. The main
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advantage ot looking at the mechanism in a limited number uf points is he reduced time ot
,omputation. The main disadvantage is that the mechanism might act in an unexpected way
between the positions Ot synthesis

In the current implementation up to two output bodies may be defined as either rotating,
translating, or general motion, see Figure 2 1

Output body

Output bodyOutput body ,'" \ - -- -

(a) (b) (v)

Figure 2.1 (a) rotating output body, (b) translating output body, (c) general motion output body
Each beds is shown in the jift position of synthesis (continuous line) and the Ist positon of
synthesis (dotted line). The different quantities that are prescribed are shown

For a rotating output body the rotation relative to the first position of synthesis is prescribed

Ot b5 j *J 2 nN5 ,

where n.. is the number of positions of synthesis. For a translating output body the translation
relative to the first position of synthesis is prescribed

65 , J - 2 nm.

For a general motion output body there exist a point of interest. The rotation of the body and the
motion ot the point ot interest relative to the first position of synthesis are prescribed In order
to relate the point of interest relative to the surroundings its position in the first position ot
synthesis is also prescribed:

Pi (Pis ' Pit,) , n * 2

01, J "2 n ,

~P, (PIX, PId)

Each variable may be prescribed in three different ways

I X is free
2 X=C
3 C, < X < C,

where X denotes any variable and the C's are the prescribed constants



Restricted areas are simply defined as a number of boxes, see Figure 2 2. The mechanism must
stay outside these boxes in any position (not only the positions ot synthesis) The advantage ot
using boxes ot restriction is that it is possible to generate both convex, and concave outer limits
as well as isolated areas. e g a beam passing thorugh the plane in which the mechanism is to
be synthesized

(\v ,'Is

Figure 2 2. Box of restrction area. The box is given byfive parameters. Xb, Yb, -sb. l. and hb

3. Mechanism structure

There is no such thing as an optimal mechanism structure for a given task There are. however.
some simple rules such as the fewer movable bodies the better and rather revolute joints than
translational joints According to this it is always a good idea to try and solve the problem using
a four bar mechanism as the one shown in Figure 3.1.

Figure 3 1 Four bar mechanism

For one reason or another the four-bar mechanism might not be a good choice Naturally, it the
desired kinematic behavior is prescribed as two general motion output bodies it is necessary to
look at a mechanism with more movable bodies that are not directly connected to the trame
Normally, however, the choice of structure can only be evaluated atter a number of dimensional
syntheses has been performed The results could indicate that it is impossible to fulfill all
constraints or that the dynamic behavior lies at an unacceptable level subject to these constraints
Then it is necessary to investigate another ani more complex structure or simply to realize that
it is not a good idea to use one degree of freedom mechanisms to the current task
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The phdosophy used in this work is based on the above observations and it says depending on
the number ot output bodies and the prescribed motion tor these bodies a list ot mechanism types
is generated The first type is the simplest and. thus. the one that is checked first and so on Each
check Involves the remaining four levels described in the previous section carried out a specific
number ot times The designer may stop as soon as an acceptable design is reached or as soon
as it becomes clear that this mechanism type cansiot solve the problem satisfactorily
In Figure 3 2 the generated lists or some or the different possible output combinations are
shown

a)(O (0 0,,0
* ,. - ... I

(d) o, i

Figure 3.2. Mechanism types listed in ias sequence they are checked for different combinations
of output bodies (a) one rotating output body, (b) one translating output body, (c) one general
motion output body, and (d) tao general motion output bodies

In Figure 3 2 The letters I and o (with indices added in case of two output bodies) stands tor
input- and output body, respectively Alternative output bodies tor the same structure are shown
as (2nd alternative) and 13rd alternative]. The only exception to the restricted use us lower pair
joints is the double crank (no. 7 in 3rd list) where it is understood that some kind ot gear
prescribes the rotation of the two bodies connected to the frame relative to each other
Naturally the designer may rearrange the sequence ef each list or totally omit one or more types

In the current implementation a fixed total of 18 mechanism types with up to five movable bodies
are previously defined. If the designer wants to check more complicated types he must also define
the structure in the structure editing facilities of SYNMEC Each mechanism is stored as Assur
Groups and cranks (see also [41) which makes it possible to have a both general and effective set
ol analysis routines for the calculation of positions, velocities, accelerations, and reactive forces
and moments Also the subdivision in Assur Groups is of great advantage in the general
identification of design variables (see Section 4), calculation of analytical sensitivities (see Section
5). and lire segments (see Section 6)
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4. Initial search

After the selection ot a mechanism type the next step is to add some dimensions The simplest.
and in the authors view. most effective way of doing this is by generating a large number ot
mechamsms and picking out a specific number that best fulfill the desired kinematic behavior
It could be argued that also the territory constraints should be included in this random search.

This is omitted, however. because it is much more time consuming to check if a mechanism has
moved into restricted areas in any position rather than checking its kinematic behavior in a few
positions of synthesis Thus, the initial search returns a number of mechanisms with a kinematic
behavior relatively close to the desred but with no regard to the surroundings,
In order to randomly generate dimensions for a mechanism type. two things a necessary-

identification of design variables and upper and lower limits for each of these The design
variables may be divided into two categories geometrical and kinematical variables The
geometrical variables make up the actual dimensions of the mechanism Consider the four-bar
mechanism in Figure 4.1

I,..

Figure 4.1 Four-bar mechanism shown in thej 'th position of synthesis The coupler link is used
as a general moton output body

For this mechanism the nine geometrical variables are,
xi, Yi, x2, yz. Lt. L, L3t, xp, yp

The kinematical variables are the relative rotations of the input body in each position or synthesis

as well as the rotation in the first posimon of synthesis-

J nN,

Hence, the design variables R are made up by a fixed number of geometrical variables and a
number of kinematical variables depending on the number of positions of synthesis

X (xi, yi. xz, y ,, L, L, L3, xp, yp, ,1, 12 ... , .
8
i,

In general there are also one or more configurational parameters that describe how the
mechanism is assembled. For the tour-bar mechanism there is one such prameter These
configuratronal parameters are part of the variables that decide the behavior of the mechanism.
but they should not be mixed with the design variables because they always are fixed during a
dimensional synthesis and therefore belong to the structural data In SYNMEC the different
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configurations are taken into account during the initial search by simply checking each
,onfiguration for each randomly selected set or design variables
The automated identification ot the design variables and their their upper and lower limits is

done simultaneously Firstly, some characteristic length must be determined tar the problem at
hand. In the current work the desired kinematic behavior is used to generate this number by
taking the average of the sizes or the prescribed translations/motions If only relative rotations
are prescribed the characteristic length is simply set to I The limits are automatically prescribed
as follows

-0 < length < 3L,10

-3L, < coordinate < 3L

0 < rotation < 27r

where L, denotes the characteristic length The desigxvarrables tor the tour bar mechanism in
Fig 4 1 may be grouped in the following way

lengths ,L1 L,. L3

coordinates Il, Yi. 12. Y2, "p. yp

rotations 01, 1. ., $I'M

Two types of design variables, namely the positioa of revolute joints fixed to the frame as well
as the relative rotations of the input body (timed problems), may be prescribed in the same
manner as the desired kinematic behavior (s-e Section 2).
Two numbers are of practical interest in the initial search: the number of designs that are tested

and the number of designs that are stored for further use. In the current version of SYNMEC the
automatically selected values for these numbers are 20(t1Onod, and 20. respectively The
number no.X, represents the number of configurational parameters for the mechanism type in
question It should be recognized that the purpose of the mit. search not is to cover the entire
design space (this is, even for simple mechanisms in a relatively t v positrons ot synthesis, a
computationally discouraging task) but to get a number of reasonably good initial designs

5. Kinematic behavior

The initial search returns a numbur of designs that have a xinematic behavior close to the desired
one Next step is to change these mechanisms with a view to filfill the dlesired kinematic
behavior exactly. Both during the initial search and the subsequent synthesis a to,-tulation or the
deviation from the desired kinematic behavior is required. For that purpose the tuton I is
ntroduced

1(X) - C'1)
2  

C

(X - C,)
2 

. X > C,
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Here C, and C- represents lower and upper limits, respectively, that are prescribed for the

variable X If X is exactly prescribed to some value C this corresponds to

C, -C 5 -C

If X is a free variable we have

C, -i , C,.

In the case of a rotating output body the deviation is formulated as:

D - I (O,)
J-2

The index K refers to kinematic deviation. In the case or a translating output body the deviation
is formulated as:

DK I (Si,)
J-2

Finally, for a general motion body the deviation is formulated as:

< ~Dg - 1 (Pl.) * 1 ('ply) -2.1 (Pl..,) 1 (Pljy) + W 1 (011)

A weifhtfactor w is introduced to eimnmate the difference in magnitude between {length ) and
[angle-1. In SYNMEC the automatically chosen value for w is:

2 nun-~~~w - 4L/, 
a a

rad,

which approximately corresponds to saying that an sagnlar deviation of 30
° 

should equal a length
deviation of L=.
The minrmiation of DK is performed using a Fletcher-Davidon-Powell routine The sensitivities

are calculated analytically which mncreass the speed of calculation significantly.
As an example consider the four-bar mechanism in Figure 5.1 which is one of the results of

an initial search

Figure 5 I Initial mechanism shown in four positons of synthesis The desired position of the
point of interest P in each positions of synthesis is indicated by a rectangle
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The desired behavior is as tollows
= (0, 0)  V:= (75. 0) F13 = (75, 50)  T;,, (0.50)

Furthermore, the relative input rotations are prescribed to

80* < '1, 
< 100' 170' < 

013 
< 

190' 2601 < 814 < 280*

The minimization returns the mechanism shown in Figure 5 2.

Figure 5 2. Synthesized mechansm. Kinematic constraints has been taken into account and the
point of Interest passes exactly through the four prescribed rectangles.

It should be noted that the mobility of the mechanism not is checked in the positions between the
positions of synthesis.

6. Surroundings

Whether a mechanism is to be fited into an existing cnvironment or designed together with its
environment there will always be some kind of requirements upon the amount of space that may
be occupied. These territory restrictions can be of a very varying nature, e.g , some constraints
are only active in certain periods (other moving machinery) and some only reters to some of the
bodies of the mechanism
In order to examine the area swept by a mechanism it is necessary to analyze it in a number of

positions that satisfactorily describes its continuous behavior. In SYNMEC a mechansm is by
default analyzed in 35 positions between the first posion of synthesis and the last.

Figure 6 1 To mechanisms subdivided into five and eleven line segments, respectively,

... ....
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As mentioned in Section 2 the territory constraints are defined as a number of fixed boxes In
SYNMEC it is automatically assumed that all bodies should stay outside any box at any time
The area o u.upped by a mechanism is best obtained if the mechanism is divided into line
segments In Figure 6 I the subdivision of two mechanisms into five and eleven line segments,
respectively, is shown.
Each line segment must stay outside eacb box of restriction in each analyzed position. How

much a line is inside (violates) a box is illustrated in Figure 6 2 where three out ot tour possible
incidents that may occur between a line segment and a box are shown. The fourth incident
corresponds to the segment lying outside the box in which case a = 0

Figure 6 2. A box of restriction and a line segment that represents part of a mechanism arc
shown in three different incidents (a) the line segment lies inside the box, (b) the line segment
crosses the edges of the box once, and (c) the line segment crosses the edges of the box twice
For each case the corresponding violation of the box a is shown.

In the case where the line segment crosses the edges twice it is necessary to include a' to avoid
that the mimmization routine just positions the line segment perpendicular to the crossed edges
Denoting the violation of the i'th box of restriction by the j'th line segment Au it is possible to
set up an expression for the total deviation from the territory constraints in a single analyzed
position:

pO~StO0L

where the number of boxes of restriction and line segments are denoted nB and "L, respectively.
The index T refers to territory. The division by the total numbers of violations is done in order
to get an average value that directly can be a,!ed to the kmammatic deviation DK without the risk
of being dominating. In SYNMEC only the maximum value of D r , as opposed to summing Dr
from each analyzed position, is included in the minimization. This is, naturally, done because
of the immense gain in computational efficiency The drawback is that a minimization step where
only one analyzed position is considered might cause even higher values of DT in other aalyzed
positions In SYNMEC this problem has been met by including in the minimization the three
analyzed positions that most recently have contained the maximum D r value.

I i. A deviation that take into account both kinematic and territory constraints can now be stated as
i ~, -m D g  -Dr.-i

where Dr,_, is the sum of DT values of the three previously mentioned positions. The
minimization ot D, can be performed directly on a mechanism delivered by the initial search
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or to a mechanism where DK already has been minimized The latter is the default approach in
SYNMIEC.
As an example the mechanism in Figure 5 2 is considered, see also Figure 6 3

0" ii i 0 O 5 0 15

Figure 6 3 The mechanism in Figure 5 2 with territory constraints added. Four beams lying
perpendicular to the plane has to be aivided by !he mechanism The beams are indicated as
hatched rectangles.

Four beams lying perpendicular to the plane are introduced as four boxes of restriction and a
minimization of D,, returns the mechanism shown in Figure 6 4

Figure 6 4 Synthesized mechanism Kinematic and temtory constraints have been taken into
account

It should be noted that SYNMEC by default only examines the period betweer the first and the
:as, position of synthesis. It must be stated specifically ifthe territory constraints should be active
for a full 360* rotation of the input body.
Because the mechanisms are thought of as lines the designer must take into account that the

dimensions of the real mechanism takes up more space (width of haks, bearings etc.) by defining

tougher territory constraints.

7. Dynamic behavior

Any mechanism will be subject to some kind of applied loads as well as inertia forces. These
loads cause reactive forces/moments to appear in the kinematic joints as well as the input
forces/momeecs required to generate th. desired motion In this context the dynamic behavior is
recognized as those reactions Consequently the purpose of optimizing the dynamic behavior



ff

orresponds to minimizing the sum of the squared reactive forces. If the entire dimenional

synthess is regarded as an o mion problem be tormlated as:

Minimize reactive torces
subject to kinematic and trai.

It is the experience of the athor that the main problem .n dimensional syrthests is to simply find
a mecdamnsm that meets bostl the consrrains on the kinematic behaior as %ell as the
surroundings. Hence. the difficult part is to get imo the feasible design area %hereas the
subsequent improsement in dynamic balavior is less of a problem.
It is typical that a relatiely modest change (at least to the human eye) of the design variabes

of a inechanism may give at sigeafieant improvement in the dynamic behavior.
No applied loads need to be defined. The output hod) (ies) are simply subjected to unit loads as

shown in Figure 7. 1.

(a) b e

Fgure 7 1 The auzomaztcall applied loads used on (a) a rotating ouput bods. (b) a transtang
output body, and (c) a general motion output body.

The approach taken in SYNMEC is very stable but also rather slow In order to avoid the
problems of weighting fundamentally di'ferent quantities such as reactive forces at..
lengthslangles the calculation of the (searic behavior is isolated from the calculation of the
deviation from :he constraints. ThIs is ' ,S in the fcilowing way a mechamsm is generated that
fulfils the constraints. The first des gr ibhle th. i, jot prescribed to be exactly equal to some
constant is perturbed a certain amount. This means that the mechanism no longer fulfils the
kinematic and territory constraints and a mmnuzation of D is performed but with the perturbed
variable fixed to its new value If D. is reduced to an acceptable value. i e.. the value it had
before the perturbation, then a new feasible mechamsm has been generated and its dynamic
behavior may be compared with that of the onginsl one. This ts repeated for each design variable
and the peruhation that caused the greatest improvement in the dynamic behavior is selected as
the new design. Now the entire proces of perturbing each design variable may be repeated and
so on. The minimzation ot the reactive forces is repeated until none of the fixed perbations
caused any improvement or (which is what normally happens) Du cannot be minimized to an
acceptable level for any of the dynamically improved desi;ns The size of the pertubations are

coordintes and lengths L,/20

rotations' I
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It should be moeita new charwjnc length L, is calcuilated a eaerage or all link

tongly icesste iscriy hs eeniduIed:iefism a iabe mt emed inany

perturbation follossed by the minimization D_ still causes the dynamic behavior to be iinprosed
it is used again widhout checking the other penrtubatios Naturally, one might risk to oserlook
a petutrbation that gives a better improvement but in practise it works %ery %ecll
Mhe dynamic behavior in a specific analyzed position is calculated as:

D.. RZ

where n;R is the number of reactions and R are the reactions It should be noted that if R, is a
moment it is divided by the updlated characteristic length Lc. The dynamuc behavior used as the
object of minimization is the maximuam value of D, In order to find that one. the continuous
behavior of the mechanism is required just as in the case of the territory constraints and, hence.
the sante number of analyzed positions are used
As an etample the mechanism in Figure 6 4 is subjected to a minimization of the reactions and
the result is shownt in Figure 7 2.

0:

:~3 33 .3 0 0

Figure 7?2 Synthesizd otciantsin Kieiac and trmbory constraints a.r %itu as dynamic
behassor has been taken into accountj Although not much has happened the obtained improvement in D~ _ is 22%

8. Example

:n this section an example that demonstrates the main idea of the approach discussed in this paper
isgiven The variety of solutions that may be obtained should give the designer a fair chance of

either picking a reasonable design or choosing not to use the types of mechanism bandied in
e SYNNIEC to solve the problem at hand

A body is to be approximately vertically translated inside a square room. see Figure 8 1
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Figure 8 1. The Idfnematic and terrtory constraints The mechanism should stay ithin the square
and the point of interest of the output body should move inside the vertical band to the right
Dunng the ve rcal motion the output body should not rotate more than 10* to either side

The kinematic behavior is accordingly prescribed as follows

P2 = (90,10) -2 < PI2x Pi 4 < 2 P12 = 10 P3 y = 20 P14r = 30

-10" < 012 0" < 10

Furthermore, the following constraints are laid upon the relative input rotations

30* < $12 
< 
60' 70- < $,, 

< 
100- 110. < 1i4 

< 
140.

The territory constraints are defined by four large boxes of constraint that make sure the
mechanisms do not move outside the room, see Figure 8 2

I j
Figure 82 The four boxes of restrctton that define the temroty constraints
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L A small portion of the usable mechanisms are shown in Figure 8 3a e No dynamic behavior has
been optimized for any ot these mechanisms

(a)

(b)

(C)

Figure 8 3a. Synthesized mechanusns. (a) four bar mechanism (b) six bar mechanism, (c) six bar
mechanism (samne struciure but as (b) but alternaive output body), continued on the next page.
(d) another six bar mechanism, and (e) five bar mechanism (double crank)
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(d)

(e)

9. Conclusion

In the current paper an approach to the combined structural and dimensional synthesis of planar

rigid body mechanisms is introduced. The automated version of the approach is emphasized with
a view to present a method that only requires input from the designer concerning the actual
problem (and nothing concerning the mechanisms) in order to return a number of synthesized
mechanisms Both kinematic and territory constraints may be prescribed in a new and general
way An optimization of the dynamical behavior subject to these constraints may optionally be
carried out.
The approach is .:ded into five levels that include picking a mechanism type. doing a random
initial search, and performing dimensional synthesis with respect to kinematic behavior first, then
territory constraints, and. finally, dynamic behavior
Future work will a o. concentrate on more complex ways of defining the territory constraints,

e g , taking into account that some obstacles only are present at certain times and only have
itfuence at certain bodies of the mechanism Also the possibility of defining any shape of
particular bodies will be incluced

Acknowledgement. I would like to thank my colleagues John Hansen, Finn Uldum, and Carsten
Nilsson at the Technical University of Copenhagen for advice and help
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SYNTHESIS OF SPATIAL MECHANISMS
USING OPTIMIZATION AND CONTINUATION METHODS.

JOHN M HANSEN
Department of Solid Mechanics

Building 404
Technical University of Denmark
DK-2800 Lyngby
DENMARK

ABSTRACT The aim of this work has been to develop a method that can be used within synthesis of spaial
mechanisms, specifically on the problem of designing a mechanism for which a coupler point can describe
a given path, given by a number of discrete points

In order to maintain the method general. i e be able to work for arbitrary mechanisms, a general analysis
method is used as the basic tool, and to maintain a minimal number of degrees of freedom the joint. or
relatve. formulation employed No atemps are being made to match the points exactly Instead an
opnnuzation procedur. is employed to minmize the distance from the path of the coupler point aid the
desired path

Ink order to stablize the procedure, a continuanon method is applied in conjunction with the opimizanotio
method so that the desired path are gradually changed from points being close to points on the mtial coupler
curve to the ones actually desired With this combination a method for synthesizing a spatial mechanism
towards a mechamsm that can deucibe a given coupler curve has been developed that is both general and
stable

1. Introduction

In this paper the problem of pathgenerataon for spatial mechanisms is treated I e, a
procedure is developed with which dimensions for a given type of mechanism may be
determined mn order for a point on the mechanism to traverse a given path.

For planar mechanisms tins has been dealt with for many years and both textbooks and

papers treating the subject are available, e.g. fl-9] The general approach in most
presentations have been to focus on one specific type of mechaiasim and develop a method

j for synthesizing that particular mechanism Only few papers treat more general
d formulations that are capable of dealing with arbitrary mechanisms Examples of this arc

HAUG & SOHONI [3] and HANSEN [10]
Synthesis of spatial mechanisms has not been explored to the same extent yet Among

the work published ANGELES [I I and CHIEN et al. [12) give interesting examples
These papers, however, deal with specific mechanisms, and the methods are not applicable
for arbitrary mechanisms

In this paper a synthetis method is introdvced based on an analysis program that can
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deal with arbitrary spatial mechanisms It is thus capable of synthesizing general spatial
mechanism to generate a given path.

The analysis method is based on the joint variable formulation, described for closed loop
dynamics of rigid bodies in NIKRAVESH & GIM (131, so that a minunal set of degrees
of freedom ts used during the analysts, making the analysis phase very efficient

In the synthesis phase, the distance between the desired spatial curve and the one
actually generated by the current design of the mechanism is mininized. Tius is carried
out by making a splme interpolation of both curves, and then measure the distance as the
sum of squares of two sets of points equally spaced along each curve. The synthesis phase
consists of a nummization of this distance by a standard optimization procedure, letting
a number of the dimensions of the mechanism be the design variables

As already observed by others, e.g. [8], (11]. the imminimzation procedure applied to
mechanisms may not be able converge if the initial guess is not very close to the desired
configuration This problem may be overcome by using a continuation method, (8], [10],
[II] The basic principle behind this is to define a series of intermediate paths, that are
defined by interpolation between the path generated by the initial design and the desired
one. The nunmmzation procedure is then carried out sequentially for each of the
intermediate paths This stabilizes the procedure considerably.

2. Analysis method

The analysis method is based on the joint coordinate formulation as described in ( 13] Th, s
method constitutes an efficient analysis tool wth which arbitrary mechanisms can be
analysed. The concepts of the method is summarized here. For a more detailed explanation
the reader is referred to (13] or NIKRAVESH (14]

Assume that the j'th joint in a mechanism is a revolute joint, that connects body j - I
and body j. as shown in Fig. I.@I

Fig I A resolute oint cooocung two bodies The join
t 

vaiable is 0,
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If the position, r .,, and rotation, A, , as well as the revolute joint axis.s, u, and the
' joint variable 0, are known, the position r, and rotation A, of body j can be

deternmined (Boldface symbols denote vectors and matrices).
Similar relations arc valid for other types of joints, and for a chain of bodies, the

position and rotation of each body may be found if the orientation of the base body and
the vector 0 of joint coordinates along the chain are known Tlss is readily extended
to more complex tree-structures, so that, knowing the position and rotation of the root
body and the joint coordinates of all the joints in the tree, the orientation of all bodies in
the tree may be determined.

Mechanisms. however, usually includes one or more closed loops. To deal with this, the
loops are cut at one of the joints in each of the loops, and mathematical expressions are
derived that expres the loop closure conditions For the revolute joint, e.g.. there are three
Cartesian coordinate conditions that ensure that the two bodies connected by the joint
actually meet at the joint, and two alignment conditions that ensure that the only relative
rotation between the two bodies is rotation about the revolute joint axis

The conditions are assembled in the constraint vector TP and the loop closure
conditions are written as

'l(0) = 0 (1)

To this vector the driver constraints are added in a manner similar to one found us e.g
NIKRAVESH [ 15], but expressed in joint coordinates. The set of nonlinear equations are
solved in a series of discrete positions of the drivers using the Newton-Raphson procedure
us

-k. - () (2)
0X.1 =0k * Aek-1

Here, C is aTP/aO and the expressions that appears us C are given in [14] for all
standard combinations of joints. Eq (2) may then be solved with respect to the joint
variables in a number of discrete time steps, corresponding to the desired positions of the
drivers.

In Eqs (1) and (2) only the actual degrees of freedom in each joint enter as variables
resulting in a very effective analysis tool

Once the joint variables are determined in each time step, the position ard iotation of
each body may be calculated as explained above The point of interest used to generate the
desired path is on, say, body j Knowing the position and orientation of this body, the
global position of the point of interest is calculated as

s' = r . As/' (3)

in which s 'and s
' 

are the coordinates of the point of interest in the local coordinate
system of body j , and in the global coordinate system, respectively

With this procedure any mechanism based on the joints fot whuch expressions for the
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I, 1

updaung process (from body j-I - body j ) and the entries in C have been derived.
may be analyzed In the present work this includes the revolute. the translational and the
spherical joint.

3. Path generation

The objective of this work is to be able to design a mechanism for which a coupler point
traverses a given path. This is accomplished by rnmizing the distance between the given
path and the one actuaUy generated by the mechamsm. Hence, a measure of the distance
is needed In this work a 3D-splme representation is employed, as will be shown below.
During the mininuzation a "black-box" subroutine that solves the problem as a sequential
quadratic programming problem is used.

31 THE 3D-SPLINE REPRESENTATION

Consider the two spatial curves shown in Fig 2 It is required to detemne the distance
between the desired curve, C, , shown as a number of discrete points in Fig 2, and part
of the curve, that the current mechanism generates, Cc For now, assume that it is known
which point on the curve is the first and which is the last that is taken into consideration
The curve has been determined numerically by the analysis procedure described earlier,
and is thus given as a number of discrete points

oo

0 Cd

y' °

O , - iufatcme. 'interring' purr

a [talat eurve, reit of curve
o Desired curve

Fig 2 A deired path. given by diette points, and the cmrrent path with the "interesting" pat
highlghted

The points that make up the two curves that are to be compared are not necessarily
equal in number, and even if they are, there may not be a one-to-one correspondance
between the two set points Hence, in order to compare them it is necessary to perform a
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spline approximation for each of the curves, and from that generate a new set of points on
each curve that can be compared.

The spline representation for each of the curves is found as follows As the curve is
traversed from point to point, the (linear) distance between two adjacent points is
calculated, see Fig. 3 The distances are summed and saved, so that an approximate
curvelength for each curve is obtained Each partial lengh' is then divided by the total
curvelength, so that a series of discrete curveparameters u, are found I e, the points are
expressed as functions of u, as

F 
I

:1= y(ud) ) n 0, ,N and u. = 0....,1 (4)
t.J z(u)J

assuming there are N+l points and N lines connecting them The curve parameter u
is in the interval [0,1] Each of the set of coordinates, x , y , and z are then spline
interpolated using a cubic spline routine, with u as spline parameter

P.1

iP.t

x
z

Fig 3 Points along a curve. aod corresponding inight$

3 2 THE OBJECTIVE FUNCTION

From the spline representation of the two curves it is now possible to generate a new
senes of points along each curve, using equidistant values of u from 0 to I . Thus two
sets of points are generated that will converge towards the same points as the two curves
approach each other.

Assuming M + 1 points are generated along each curve, a measure of the distance
between the two curves may now be calculated as

M

in which X is the difference between the curves, P,' is the m'th (spline interpolated)
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point on the desired curve, and P,' is the corresponding point on the current curve Using
(5) it is thus possible to obtain a measure of the diffence between the two curves that is
independent of the waN the points on the desired curve are generated, and on the
distribution of the points on the coupler curve. The measare X is chosen as the objective
to numuze in order to redesign the mechanism so that it generates the desired curve

3 3 SENSITrTTY ANALYSIS

In the opunization procedure the derivatives of the objective function with respect to
design variables are needed. The design variables may be any dimension of the mechanism
that has an influence on the generated curve, such as link lengths, positions of joints,
orientation of joint axes, etc. In this work the derivatives are approximated by numerical
diffences. so that

aX X(bAb,) - X(b) (6)
7b Abt

in wich b is the vector of design variables, b, is the k'th element of this vector and
Abk is a vector in which all entries except the kth are zero The k'th entry is equal to
Abk , which is "a small quantity". In the examples for winch the procedure have been
employed, a value of .001 has appeared resonable.

By implementing the derivatives this way the calculation of th, gradients is easily
implemented, since only a pertubation of one of the dimensions and one analysis of the
mechanism is needed for each gradient. It is thus again the general analysis program that
is needed to do the calculations. The draw-back is that the computer time spent in the
synthesis phase grows linearly with the number of design variables.

3 4 THE INTERESTING PERIOD

In section 3 2 it was assumed that the first and last point on the current curve were known
Tus is seldom the case and It is desirable to avoid having to specify that

In tis work this is avoided by specifying extra design variables in addition to the ones
defined in scuon 3.3. The first is in relation to the initial position of the drivers Take e g.
a evolute joint with a driver that prescribes a constant angular velocity. It is given by

0 -00 (7)

Here, 00 determines the positon of the driven body at tune equal zero, and hence the
position of the coupler point at the initial tume. Thus, introducing O as a design variable
any restrictions on the initial point on the curve are removed Similar variables may be
introduced for other drivers. Following the same line, the period in which coupler points
that should be included in the comparison with the desired curve may be introduced as a
design variable, defining what is here referzd to as "the interesting period"
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4. Continuation method un

The above mentioned procedure works well if the initial guess creates a curve that is close
'i to the desired one With poor inital guesses, though, the method may not converge One

way to remedy this is to use a contnuaton method, as used in e.g. [8] or [I1] It is
e-ployed as follows: Between the curve generated by the ima! mechansm and the
desied one, a number of curves are determined by interpolaton between the two given

ones. The one closest to the nitial curve is selected to be the current desired curve, and
the opuization procedure is applied m order to design a mechanism that generates this
curve. Then the next curve is selected as the desired curve etc until the original desied
curve is selected, and a mechanism determined that is capable of generating the curve

Again, the two curves need not be descnbed by the same number of points, and hence
spline interpolations are being performed on both curves, and the interpolations between
the two curves are performed on the same number of points on each of the curves. It is
thus possible to generate straight lines between corresponding points on the curves and
perform a simple linear interpolation between these points

5. Examples

Below, two examples are given in which the procedure has been employed In the first
example, a spatial slider-crank is synthesized to generate a straight line as part of its

5I
be. bo' blo)

bond b, Spherical angles ao ut

Fig 4 The design vaables of he spataJ sihder crank It is sown with the values of the mal
design
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court~er curve, and the second is thec spatial el.eL also found in (11l. in whbich a
spatial four bar mnechanism is sovrbr tisraed so thI= it can drive a spatial Gneva ub.eel.

5.1 TIM SPATIAL SUDER-CRANK

Consider the spatial slider crank shown in Fig. 4. The goal is to have part of the coupler
cur'.e generated by a point on the coupler to follow the straight Ime showni as C. -The
desien variables are shown in ie. 4. too. The:) are the Iecsghts; of the coupler. b, and the
crymk I. the location ( 1,, . b3 b) of the revolute joint that the crank rotates about, the
direction. given as the two sperical angles b. and b,.of this Joint axis. u, . and the
coordinates of the coupler point ( b, i, ha). In addition to that the two conditions for the
interesting peiod are used as design variables, giving a total of 12 design variables. The

desired straight line is given by 10 points along the line from ( -0 05. 0.20. -0. 10 ) to
(-0.15. 0.20. -0.10 ). The initia design is given by

(b)" = 0.30. 0.10. 000. 0.12. 0.10.. (8)

0.0. 0.0. 0.05. 005. 0.05. 0.05. 0.30}IC

Initial position of joint

fig 5 The final desig of th. spa.,al slid. rund

The synthesis was carried out using 4 continuation steps In each continuation Step an

average of 15 iterations w~as seeded in the opurnuzation process. and the final design
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variab!es %ere

b= i 0.218. 0.073. 0.056. 0.070. 0.209. 1.776. 0.300. (9)

-0.197. -0046. 0.056. 0 171. 0.115

E0 - nitial curve. interesting past
.-- I iial cirve, rest of curve

0 Desired une

A- Found curve. "interestmg" part -.

- - Found curve. rest of cuv

x zC

z

AY

z

Fig 6 Thu ir., the des =red 3 d.M ruhe tmg cuve for the spn shdur.tr k m ch ism. sho w m
four view dfuomnsu

At the enn of the iterauons the objective function had a value corresponding to an
average deviation of about I mm between the two curves. The resulting mechaism is
shown in Fig 5 In Fig. 6. the initial coupler curve, the desued one, and the one generated
by the procedtre are shown.
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52. TIM SPAThAL GENEVA WHEEL

This example may also be found in [11]. %he the synthesis is performed using a
procedure specifically designed for the spatial four bar mechanism with four revolute
joints.

The goal is to generate a spatial four bar mechanism with four revolute joints, that can
drise the spherical geneva %heel shown in Fig. 7.

z x

Fig 7 The spheical genva whmeL.

From [11 it is known that if the four revolute joints are placed on the sphere, then it
is possible to design a spatial four bar mechanism that can drive the wheel The path that

the coupler point must follow in order to drive the wheel is given in [Il1 as

{ x1[osysiia ~(10)
zJ oycoscJ

with
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cc -- sin(2;-) -
2 2

-I"1= -3. '3z O'92720 t1(I

Based on (10) and (11) a number of points can be generated to define the desired
S clme.

cure,

2,,

z x

F ' g S The fiiui dmien of the Geneva wheel

Since the joints are restrcted to lie on the unit sphere with the joints axes being directed
from the centre of the sphere pointing radially out through the joint points, both the

,| position of the joints and the direction of the joint axes are defined through the two
o spherical angles of the joint axes. Hence, the design parameters are the two spherical

angles for each joint and the coordinstes of the coupler point, shown as P in Fig 7, and
, the two mnteresting period parameteres. giving a total of 13 design variables The inital
"i configuration is the same as the one given in [ll], which cotresponds to the design
.I variables being

I
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{b}
" 

= {0 8633.0 326.1.204,0 9800.0.3661.0.9795,0.7074 (12)
0 4326.0 0000.0 .0000.0 0000.0 3000)

- Initial curve. 'interesting' part
Inital curve, rest of curve

0 Des.red curve
A - Found cu,"e. interesting" part

Found curve, rest of curvey,00Ost

yy

z x z x

ty

Fig 9 TM imniial. the desitd and ie final carve for the Geneva wheel. ihow in four view d necsum

The optimuzation procedure was again applied using 4 continuation steps Here, though,
the linear mterpolation between the curves was not used. Since the curve is known to he
on the sphere, the interpolautions were made on arcs between the initial and desired curves
to ensure that the intermediate curves were on the sphere, too

In thss example ti,- rowzer needed an average of 23 iterations in each step, and the
final values of the design variables were

2
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(bi

(hi' fo 8633.0 6516.1.254,1013.0 3722,0 9902.0 5643. (13)

0 7269.0.1255,-0 1164.-0 2166 0 8607.0 29711

The resulting mechanism is shown in Fig 8. and the initial, the desired and the
generated curves are shown in Fig 9 In this example, too, the value of the objective
function corresponds to a deviation of about 1 mm from the desired curve.

P 6. Conclusion

In this work a general purpose tool has been developed with which it is possible to
synthesize the path generation for arbitrary spatial mechanisms. The method is based on
a general purpose analysis method It is therefore not restricted to particular mechanisms.
but is capable of synthesizing any mechanism that can be analyzed with the analysts
program Also, the desired path is described by a number of discrete points, and it is
therefore possible to define arbitrary paths as desired curves

Introducing the "interesting period", i.e. the position of the input links at initial time and
the interesting time, as design variables, the need to specify which part of the coupler
curve that is the pathgeneratiog part has been elimiuated.

To improve the stability properties in the procedure a continuation method is
implemented I e , the procedure does not attempt to generate the path directly from the
intial guess on the dimensions, but instead the desired curve is gradually changed towards
the actual desired one in a number of steps, and an optimization procedure is applied in
each step to mmunize the difference between the two curves

At present, the sensitivity analysis is performed with finite difference approximations
of the sensitivities. The major draw-back of that is that the method is very slow. since a
sensitivity calculation requires a complete analysis for each design v'aable A natural
continuation of this work is to implement analytical sensitivities in the procedure
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DYNAMIC SIMULATION IN WEAPON SYSTEM DESIGN

Robert M. Dombroski
U.S Army ARDEC
SMCAR-FSA-F Bldg 6N
Picatinny Arsenal. NJ 07806.5000

ABSTRACT. Artillery Armaments Division of the Ftre Support Armament Center
(FSAC). has been involved in the mechamca! computer aided engineering (MCAE) of
weapons systems since 1987 During this time Artillery Armaments Division has become
FSAC's acknowledged experts in computerized weapon system asd munitions design and
analysis Artillery Armaments Division's capability currently encompasses all aspects of
computer aided design. conceptual solid modeling, finite element modelling and analysis,
dynamic weapon system analysts, computer aided manufacuring analysis and computer
aided drafting. Artillery Armaments Division is at the forefront of computer hardware,
software and networking technology.
flus paper will &scuss the development of a liqid propellant (LP) armament system for

a self propelled howitzer. The LP weapon system is being developed as one of the future
weapon concepts under the Advanced Fire Support Armament System program. The LP

effort demonstrates the latest in all MCAE fields, conceptual design, finite element
modelling and analysis, computer aided drafting, and computer aided dynamic simulation
and analysis This paper will focus on the dynamtc modellmg, simulation and analysis
used in the design and production of a prototype weapon system as well as the key role that

t. analysis plays in the destgn cycle.

Weapon System Design

In the past, it took the U.S Army approxinately 15 years for request to delivery on much
of its fielded equipment More recent figures idicate a 10 year lead tune Tlus is
unacceptable The Fire Support Armament Center (FSAC) of the U.S. Army s Armament
Research. Development and Engineering Center (ARDEC), Picanny Arsenal, NJ, has
increased its use of MCAE technology to dramatically reduce design, development, and

time to production by one third
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Typically, the design cycle is a chaoic and undocumeined process at worst, and a slow.

sequential process at best, with progress measured by the "thrown-over-the.wall-to-." I
milestone. Ibis leads to a 'build-test-fit' development cycle where the final product design

is dictated by whether or not it is time for the design phase to end FSAC took a three

phased approach to the problem of a sequential, poorly defined design effort. First. FSAC

implemented a distributed computing architecture which support synchroiizatton.

optimization and refinement of the information flow. Next FSAC adopted a unified

representation of the design itself, which could be accessed by all the elements of a

concurrent engineenng team. Finally, FSAC implemented an integrated set of MCAE

software which streamlined the design/analysis process This effort resulted in an

electromc capability which not only enables concurem engineering, but encourages design

by analysis of future weapon systems

Liquid Propellant Design Program

The Artillery Armaments Division (AAD) is FSAC's primay artillery weapon system

research and development organization. AAD has taken the lead at ARDEC in both MCAE

capability and concurrent engineering AAD's mission is to provide total lifecycle systems

engineering of artillery systems. AAD is responsible for planning, directing, performing

and controlling the research, conceptual design, engineering development, product

engineenng, product improvement and producibility engineerng for material including

light and medium towed and air mobile artillery, medium and heavy self-propelled amilery,

mortars, recoilless rifles and their munitions AAD is also responsib'-- for the conceptual

design, analysis and preliminary development of future weapon systems which will

improve the firepower of the U S. Army

One such project is development of a liquid propellant annon for use in self propelled

artillery systems This carston has many advantages over solid propellant weapons such as

reduced manufacturing costs, less waste i fielding charges, and less labor to handle the

ammunition. The armament system is being designed by General Electric us parallel with

the Artillery Armaments Division and Benet Labs of ARDEC who are designing and

fabricating the gun mount and the breech mechanism respectively as well as modifying the

vehicle to accept the new system Using Pro Engineer software from Parametric

Technologies Corporation and Paran Plus from PDA Engineering and IDEAS from SDRC

Inc designers from AAD, located at Picainny, and Benet Labs, located at Watervhet NY,

were able to create their respective parts simultaneously. Dynamic analysis using DADS

from CADSI Inc. was performed by analysts at Picauny on e completed assembly.

Its is difficult to put a value on the tune that was saved using an integrated MCAE design

and analysis capability. However, the design was completed at least 30% faster than

previoas projects, and that includes many more design iterations and analysis permutations

than would have been possible in the past. Other benefits came downstream in the process

from attainig a more fine r.ned design fit, that more closely meets spectications As a

result, tune typically required for the knock.down, reanalyze, redesign, rebuild and retest
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cycle was cut significantly

WORKING IN PARALLEL

In FSACsconcurrent engineering efforts. the software selected not only automates the
• engineerng tasks, it actually allows FSAC to change their worflow to better facilitate

communications, teamwork and early involvement. In FSAC. the design/development
process has been re-engineered to take full advantage of our MCAE tools FSACs
mechanical design efforts center on the solid model. The main reasons for this are the solid
model's ability to enable all team members to visualize the product from the earliest stages

of the design phase and the fact the the solid model contains all the physical characteristics

of the product, making it much more accurate than wireframe or drawings

Once detailed parts of the liquid propellant system were completed, subassemblies and

the main assembly were analyzed. Here, many minor revisions were made to each part,

adjusting chambers, bolt holes, and mating surfaces for fit. First cut drawings were

generated as designers finished each part, and electronically forwarded to draftsmen who

created final drawings. A solid model view of the liid propellant Gun System is shown

in figure I

ANALYSIS

In FSAC's concurrent engineering environment, analy.j drives the design as opposed to

validating it. As a result, the design team is provided with early and continuous feedback

on many or all aspects of the design, including such things as performance, survivability,

reliability and manufactrabilhty. Inconsistencies, design flaws and so on are trapped

earlier in the design phase which greatly reduces expensive and time-consuming redesign

later in the development process.

Analysis on various elements of the gun mount, cradle and cab began as soon as models

had been roughed out. Deflection in the cradle was examined using Swanson Analysis

Systems Inc.'s ANSYS finite-element analysis software, as was a static analysis of the

loads on the mounting point's lifting cylinders. Anticipated loads on the cab were

determined with CADSrs DADS software. Results were post.processed in Paran where
several areas of unacceptable stress and deflection were indicated, prompting modification

to original designs early in the design process. Typically, the need for these changes

would not have been discovered until a prototype was built and tested.

SIMULATION IN THE DESIGN PHASE

Historically, when modelling and redesigning m:htari systems and subsystems such as an

automatic loader design engineers had two alternatives. The first and most often chosen

was not to design a new item but to adapt existing subsystems to meet new requirements

The second altemative was for an engineer to write specialized FORTRAN codes to
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perform specific analysis functions
Advanced hardware and software technology is now providing engineers with a third

option, to design new systems without writing custom equatsons of motson but rather to
utilize mouon analysis software This technology allows designers to enhance existing

engineering designs through analysis results and realistic visualization
DADS, the Dynamic Analysis and Design System, was used to model the LP3 gun

mount and automatic loader mechanism as well as to design and analyze the crucial breech
control cam system DADS allows designers to quickly and effe.ively address complex
questions and analyze design performance. Dynamic and kusematic lysm is used to
understand how the individual pasts within on assenbly move and what forces they endure
when the assembly interacts with ext(,mal forces.

The Breech Mechanism

The breech is made up of two parts; a breech camplate and a crank The crank moves
along two campaths The first campath controls the locking and unlocking of the breech
while the second campath actually swings the breech into the open position. The moion of
the gun tube during recoil activates rollers which mo-ve -, the campaths and drive the
motion of the crank. As the roller moves along Lie fr c.4msnath it unlocks the breech
mechanism After a brief delay the second roller es crt;,vd ks the roller moves along,
the breech door swings open to allow loading of the irojemtle ard taumuion Thismotion
is depicted in Figure 2.

The objective of the motion analysis was to alter the two c.anpath so that the breech
door would open without interference An e Icader sy.te's -,as used as a baseline
design. This loader was inadequate because of an tnterfecn. berev,..n the autoloader,
breech and gun tube.

The modelling of the breech mechanism focuczd an 2 dirreasitor* kinematic analysis
For analysis, the mechanism was broken uuts indind.ial 'Iodie' This breech model
consists of two bodies, the breech camplate and the cnb. Dad desnbmg these bodies
and their interconnection %as entered with a menu-anen preproc,ssor An on-line iput
data error checking facilty immediately detects mo:t common errors such as improper
boundary conditions or connectivity

After creating the bodies, the designer defined the jons using a library of joint elements.
To complete the cam-follower joint definitions, the designer also specified the initial contact
angle. This is an eqtmate of the inital angle of contact and the point on the body which is
to follow the track at all times. The engineer then defines a driver, which in ths case was a
simple polynomial The driver defines the x motion ,: the crank's pivot point

Once these elements were created, the data was submited for analysis. (he sr;lyst
program automatically issembles the model to satisfy conitranuts imposed by the defined
joints The prognan then constructs the equations of motion and estimate . of the initial
location and orientation of the bodies. The solutions to the equatitos are to ui by using a
variable order tnme.step predictor-corrector algonthm
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The designer then examined the results. The interpretation of results is the most
important phase of the analysis process. It provides immediate verificaion of whether the

initial design meets the specifications as entered. The analysts results include the positions.

velocities and accelerations at the centers of gravity of all bodies and other chosen points

VISUALIZATION

The full visual unpact of the breech door and the entire loader mechanism um motion was

made possible through sophisticated simulation capabilities of the analysts program.

Designers were able to realistically see the crank succassfully move through the campaths

and the motion of the breech door and autoloader mechanism during the firing cyc!s After

the initial modelling of the breech mechanism and the loader was developed and analysis

performed, a detailed ammation was created by adding more complex geometry The full

animation depicts the gun tube and other components in detail, and depicts the entire
armament system as it functions through an enti. load, fire and recoil cycle De-jending

on the designers' purpose, the simulation and animation of the design can be simple or

complex. A simple model is used for initial vmaal .onfirmauon, while a complex model

can be develop-d for presentation purposes A sample of the DADS simulation model is

shown in figure 3

4ENEFTS OPSIMUIATION

IThe simulation of the autoloader and breech cam was invaluable to the design process In

addition to eaabling the campath design and analysis, it visually depicted all the kinematc

relationships between the recoiling pairs, the cradle, breech, ballistic shield, autoloader and

the vehicle turret. Without this, space claim and interference checking durng system

dynamics would cause design milestones to be adversely impacted. The animated model

communcated the mechanical concepts involved in the design to all involved in the project.

Also, from the analysis point of view, the dynamic data provided force-load information
which was critical to to the determinat:on of the strength of the cradle structure. The

interactivity of DADS and the visualization capabilities enabled the designer to examine

joint and body l'canions and body masses. These he could quckly modify to generate new

force load curves for analysts.

Concurrent Engineer-ng

The Liqusd Propellant Gun system design effort was a collaboration of designers,

engineers and analysts from both the federal and private sector The Liquid propellant

armament design was done by General Electric in Pittsfield, MA The breech mechanism

was designed at Watervliet Arsenal, NY. The gun mount was designed at Picatusny

Arsenal in Dover. NJ The overall system integration was performed at Picatmsny Arsenal.
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D-in id aa lys erons were pe.io-med si::ulaneosly 2r all the-e loca:ons. .ll
design data and p amee was accessible at each location via electronrac data transfer of

solid model gw.try. ts allowing eadi subsystem designer to know how their poron
of te- effort int -cvte ih the others. Design changes uitih impacted other subsystems

were cruicklv identified avoiding costly and time consuming eroblems later on in the

development cycle. Knowing the operational characteristics. dimensions and space

requirements of all the subsystems gr-ealy added to the accuracy of the analyses Performed

on the s y-=e.
Internally ax ARDEC. the Liquid propellant weapon system developuent effort vas

comprised of a wide range of engineermg disciplines. The ability for designers. aalySts.

simulation specialists. draftsmen and program managers to funcuon both independently,
yet in an inegted and concurrent manu"er could only be a.,ornplished through electromc

means. AADs design and analysis data as uell as all its MCAE software resides on
var.ous mamnraee file servers. Utilizing the lazest rtwodcung trchniques. AAD is able to

make this data appear to each user as a single shared corporate data base. residing on his

%orkstation. Project management software embedded in Pro Engineer orchestraes overall

secumy and access to conmcn dam
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Abstract

The subject of this paper :s the aDphcatlon of multibody system techniques for
venicle chassis modelling aimed at the development of integrated vei.::e control
It reaises that resuitine models can be complex and that simplifications in chassis
description is recommendable. For this purpose. it has de%eloped a technique for
representing suspension geometrt effects. lich by taking the -IBS structure into
account. results in small and fast runtime imulation models Yet. the model is
capable of describing the full range of normal operation of the automotise vehicle
Using the pteviously developed model. comprehensise analysis of all aspects of
vehicle motion is carried out. The objectives of such analysis is the determination
of a driving envelope in which the use of linearised models of the nonlinear chassis
can be justified for control analysis and design.

1 Introduction

The period following the early 1970's has seen a rapin increase in the application
of automatic -outrol techniques in automotise sehicles These past and current
deselopments in automotive vehicle control hase progressed mostly in a piecemeal
fashion. whereny individual %ehicle subsystems. such as the engine, suspension
and braking systems have been studied in isolation Future applications of con-
trol in automotive %ehlcles will follow a trend towards system integration. leading
ultimately to the development of integrated vehicle control s} steins capable of co-
ordinating the action of the various subsystems. The coordination and integi atioii
of autonotine vehicle subsystem control requires the interaction amongst the var-
ious subsystems to be taken into consideration at the control design stages. i e.
a total system approach to automotive vehicle control is needed.

Those aspects of seLicle motion control which are of primary interest span a
,Ivnamic range with a frequency cut-off below 50 Hz. Up to this frequency, siiti-
ltion studies of automotive sehicle dynamics can justifiably be based ot lumped
parameter models [9) Current approaches to sehicle d.namrics simulation fall into
2 distinct categories The first approach solves the use of simple mathematical
models which are derived from first principles and %sluch are usually assembled
manually
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The second approach to %encie a% namics simulation .ioies mathematical
models which incorporate representations of the %ehicie kinematics. t- re char-
acternstics and suspension geometry effects This approach to %ehicle vnanucs

-imulation can result in mathetnatical models which a-e hihil. co-mpule-. ( on-

sequently. automated model generation facilities based on muhibod% s-.stenis

Of BS) modelling techniaues are widel. emiloied.

Approaches to MBS modelling based on a combination of Kane's Method 141

and symibolic computation has been shown IS! to generate the most efficient 1run
tlme simulation code.

While the use of those more powerful and complex models makes the idea

of an integrated control system %ery difficult due to the high nonlinearities of

the equations of motion as well as tne great number of degrees of freedom: it

has not been ansaered yet whether a simplified model. honeer taking some

relevant interactions from a control point of .tew. into consideration. couid result

in improved vehicle motion. A positive answer to such a question would possibly
mean. for exampie. a reduced nunber of transducers and their related apparatus

necessary to be implemented :n a future vehicle in which these concepts might

be applied

2 Modelling of an Automotive Vehicle for Mo-

tion Control Studies

Apart from aerody.,amic resistances and gravitational effects, all external

forces acting on a vehiule are applied through the wheels Consequently. total
vehicle control will entail the application of control action at the " heels, and w ill

be based on a combination of propulsion, steering and suspension contiol There-

fore it is necessary to develop %ehicle models which are capable of representing
all these actions simultaneously.

The modelling of this work is based on an approach [2). in which sLs,,ensicn
geometry effects are incorporated in a way which does not invol%e a deta.led rep-

resentation of the suspension system. The basis of he approach is ,n empirical

black-box representation of the suspension kinematis derived from readil' avail-
able experimental data describing the suspension trajectory at each wheel hub
and wheel orientation From this data, an equivalent swing axle or trailing arm

model is derived using techniques from differential geometry
The simulation model :s constructed using the MBS package SD/FAST [10).

and the ACSL i]l continuous simulation language SD/FAST combines Nane s

formulation for a MBS model with an equation generator incorporating a trans-

parent s.mbolic computation facility, while ACSL provides the simulation envi-

ronimsent necessary to sole these equations

2.1 Schematic Description of Vehicle Model

A schematic view of the nonlinear chassis model is presented in figure 1
The model represents the kinematics of the sprung mass and the four wheels and
incorporates the effects of geometrical constraints associated with the suspension



A~" each -heel. the sutiensioo eometry effects are reuresented in a |dac.i ,ox

manner as a sning axle i31 connecting the %neel hub H to the sprung mass via a

4rgie degree of freeiom rotattonal joint pin joint I at tie point. The pin position
anti the arm length of the sning axie a,e dened empiricali. from data defining

t e ieelbase/bumn and track/bump characteristics at each ,ieel hub Tie
scescribed motion is incorporated in the imulation code and inposeai to the

appropriate joints.

I z I

Figtre I Noninear Chassis Model

In all cases, the polynomial of loaest order which adequately fitted the data
%as chosen. A comparison of these pol.nomial representations a'd the corre-
sponding wheelbase and track characteristics data is presented ii figures 2 and
3.

The variation in fore-aft and lateral wheel displacements described in these
figures appears small. Ho"sexer. the effect of these variations on the %ehicle pitch
and roll characteristics is highl, significant. particularly during vehicle nianoeu-
%res associated with large acceleration lesels.

The model provides a ten degree of freedom representation of the chassis, with
six degrees of freedom resulting from the sprung mass and one degree of freedom
from each swing axle This results in a nonlinear twenty state model. ii which the

states correspond to ten generalised coordinates and ten generalised speeds This
swing axle model provides the simplest possible representation of the suspension
ssstem which is consistent with a nonlinear chassis model intended for motion
control studies. This chassis model represents the first stage in the deselopment

of a %ehicle dynamics model for use in motion control studies The chassis model
deseloped in this chapter is based on data corresponding to a luxury European

saloon car This data was selected for illustration purpose only In particular.
it should be noted that the chassis modelling approach presented here is not
restricted to luxury saloon cars but is genexz. and applicable to a wide %ariet% of
automoti~e %ehic!e types

2.2 Topological Representation of MBS Model

The chass-s model is considered as a multibody system ma le up from fise linge

connected rigid bodies orgamsed in a tree topology ar described in figuie 4 The
central, or base body corresponds to the sprung mass and the four branch bodies
to each of the four wheels anti associated suspensioi links

ssociated with tie base body and each branch body is a local ight-hianded
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Figure 2: Front Wheelbase and Track Characteristics

coordinate frame with fixed orienta.,on and location (at the centre of mass) in
the respective body.

The geometrical description of the NIBS model can be specified by a set of
three %ectors for each of the branch bodies The first of the three '.eciers Op
describes the position of the pint joint relative to the centre of gras ity of tie bsase
body This vector is fixed in the base bod% The second vector hp describes the
position of the pin joint relative to the centre of gravity of the branch bod% and
is fixed in the branch body The third vector b describes the orientation of toie
pin joint axis

Left R (ight
Iop 1(1.441.0.303. -0.242) I(1.44L. -0.303. -0 242)

F lip 1(0.121.. -447. 0 058) I(0.121. 0.447. 0.058)
b 1 (0966.0257, -029) (0.966. -0.257. -0.029)

I op (-1.516.0 105 -1) l.. -0.105 -0.157)
R hp (-0 0t6, -0 645. 0.143) 1 (-0 016, -0 645. 0 143)

b 1. . (0.994,.00. 0113) J (0.994. 00. 0113)

Table I Geometrical description of NIBS chassis model

For each branch body. specifications for the %ectors op. lip and eb ssere ob-
tamned relative to this reference coordinate frame The sectors hp aod & %s i.
derived usinig differential geometry and the vector op was derived fronm the vei-
c dime sional data presented in table 2. The resultant '.alnes of the vectors op

hsp and 6are presented in table i To complete the physical description of ti,
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NIBS model, the mass and inertia matrix for each body is reqsireel. This data is
*also presented in table 2

Efetn eight Ifront 150 kg
of wheel Irear 1 40 k9

I__Radius __of __wheel__I 02m
Iieght of sprung mass I1600 0 kg

Principle inerias TI, ____________
of sprung mass 3000.0 kg.m'

___________ [13000 0 kg nil

[from front axle r1.32 r
Centre of gravity ffo eral 1.5 M
of sprung mass abv round r 05M

____________ troi rght/left side 1 0.7.5 "1

Table 2. Vehicle inertia and geometric data

2.3 External Forces Acting on the MBS Model
Apart from gravitational infltiences. the forces acting on the sprung mass are
aerodynamic and suspension forces. vshich also includes the effect of an autioll
torsion Isar at the fiont axle. Suspension characteristics are giseti in table 3
Aerodynamic forces and torques have also been modelled. but ate not elescsibesl
In tis paper
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Figure 4: Topological Representation of Chassis

The forces acting on each unsprung macs are the longitudinal. lateral and
vertical tyre forces, the suspension forces and gravitational forces T%re charac-
teristics are also described in tmble 3 The suspension and tyre forces are described
by the par.meters given in -Ale 3

Each suspension force is modelled as a spring in parallel with a damper The
spring and damper forces are taken as linear functions of the spring displacement,

and displacement rate. respectively, relative to the base bod . An additional roll
torque represents the effect of an antiroll torsion bar acting at the front axle This

torque is modelled, relative to the base body, as a linear function of the left/right
difference in spring displacements at the front axle. Static values for the vertical
suspension and tyre deflections are computed to balance the %Neight of the sprung

mass in the stzady-state

For the linear tyrc model, the longitudinal tyre forces represent propulsion
and braking action These forces are modelled as an externally defined forcing
teim. where it is assumed that wheel spin and wheel lock do not occur The
vertical and lateral tyre forces are represented as linear functions of the %ertical
wheel displacement and wheel's sideslip angle, respectivel)
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2.4 Simulation Model of Chassis

The computer simulation model %as built using the MBS nioieiig package
SD/FAST and the ACSL continuous simulation language The SD/FAST pro-
gram isrocesses an ASCII source code file contanimn a user-supplied descaunion
of a MBS model. Au example of part of th,- program is gien below.

The resulting source code. which is generated autonomously by SD/FAST.
consists of two main FORTRAN subroutie-s and seseral secondazy subroutines
Approximately 10 s of CPU time on a SUN 4/330 computer was used to generate
the resulting output file. This output file consists of around 1500 lines of FOR.
TRAN code. about 70% of which is contained in the main subrcutine defining
the state derivatives for the equations of motion of the MBS model

The approach to simulation model deselopment for an automotie sehicle
chassis system. described in this section. has the advantage that the model can
be easily extended to include nonlinear t re and suspension force characteris.
tics %ithout the need to modify the kinematic description of the sprung and
unsprung masses. More importantly. the approach facilitates the de%eloplhent of
shicle models which combine a MBS description of the chassis nith other %ehicle
subsystems which are not amenable to MBS modelling techniques. such as the
powertrain or a digital control system. but which can be easily represented in a
simulation language such as ACSL

2.5 Model Validation

T he amount of experimental data available was very limited, and therefore ex-
tensine validation %as not possible to be performed, as it would be desirable
The only experimental results available consisted of the static defiections of the
suspension, as it was used to dene the swing axle model Other results aailable
sere aa egenrodw analysis resoltmng from -impler models in use oy the %elucie 3

manufacturer and which had been previously validated by them.
The linear eigenmode analysis was performed with the computer simulation

model as a prelude to nonlinear simulation experiments The natural modes of
the MBS model and their corresponding frequencies and damping ratios were
computed using the linear analysis facilities of ACSL. The linear analysis was
carried out with the MBS model in a steady state condition corresponding to a

I Front Rear
Spring stiffness k,.m

-
- 200 270

Susp. Damper coefficient kXi s m 1 4 2.0
Antiroll bar stiffness AN m 200

Linear Vertical stiffnesi IN u -s 2500 250.0
tyre Cornens stiffness k,'A rd I 66 0 70 0
Steering system comphance rd.k

'  0.0051

Table 3 Suspension and hnear tyie data
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bcdy - R-gh..ronz..h**1
= Sprungzass

jo:nt * pin

-ags so

narria 0 0 0
inbtoioin. & 1.44090214828721 -0.30292586469092 -0.24179219374438
bodytojoint = 0.12090214828721 0 44707413530908 0.0S82078062S562
pn - 0.96586483194595 -0.25738705686472 -0.02927506393730

constant forward speed of 20 m/s The eigenmode analysis resulted in four mode
corresponding to the sprung mass and four further modes, two fo" each of the
front and rear s heel pairs. The results were in close agreement with experimental
observation and are presented in table 4

Modes Frequency 1 Damping

IH77T!rd/' I Fartor

I Front-end bounce 1 11 I 6.88 1 0206
Rear-end bounce 1 135 1 846 1 0266
Roll on springs 1 11.39 0.267
Yaw rate/lateral velocity I 1.29 8.13 0834
In.phase front wheel hop - 12 02 75.46 0.200
Out-of-phase front wheel hop !2.50 78.52 0 195
In.phase rear wheel hop ] 13.00 81.69 1 0 304
Out-of-phase rear wheel hop j 13.05 81 95 0303

Table 4: Eigenmode analysis

In the next section extensive simulations aie carried out in older to deteitnne
an operating range and conditions for the use of a linearised model in control
system analysis and design These simulations cover all aspects of vehicle motion
under realistic operating conditions considering driver's inputs as well as external
disturbances For that purpose transient and steady-state analysis is perfoimed
However only a few results are present for the reason of space Full details aie
given in (2)

3 Simulation and Analysis of Vehicle Motion

In order to confirm the utility of the previously developed model, as well as chal-
acterising its behaviour within an operating range which allows the definition

of appropriate control strategies, for example. sets of of operating conditions il
which linear approximations would still be valid, a large number of tests which

exercise the model within the boundaries ol its simplifying assumptions was cal-
tied out These tests or experiments, are defined to be either driver inputs oi
external disturbances and they will be looking at both transient or steady-state

behaviour of the simulation model The analyses to be performed sill consist
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of a detailed study of these nnuiations and will include eigematne anal; sis in-
H tended at terfying the %alidity of transient behatour ant gain analysis, aimed

at determining the characteristics of the model's stead.-state characteristics
Llie intention of these experiments is to allow the definitioi of a (11i Ing en.e-

lope in uhIch the interactions present. then nature and nagnitude are oiscussed
and a valid range of operating conditions for control studies can be defined

3.1 Vehicle Simulation

The simulation runs to le executed compulse tAo types of manoeuvre: one in-
tended to analyse the *elicle's transient behaviour and the another alnied at
obtaining the %ehicle steady-state response characteristics Howeser onl a few
results are shown in this paper for reasons of space The intetested reader nsa;
refer to [2) for full details

3.1.1 Transient Manoeuvres

The simulation which is used to analyse the the transient behaviour of the model
can be divided in two types' driver related inputs and external distuibances
inputs. Dr;ver's inputs will be in the propulsion system, either in acceleration
or deceleration manoeuvres. and in the steering system. in cornering nmanoeuvre
External disturbances will consist of road vertical input.

The steering input simulations which exercise the vehicle's handling or sta-
bility and steering control properties consist of manoeuvres of the so called 'free-
control' type, in which steering wheel angle is considered as the input

Quantities depicted and analysed include yaw rate, lateral velocity and accel-
eration, toll angle, wheel slip angle. lateral and vertical t.re forces As it would
be expected, the variation of other quantities of motion associated with vehicle s
forward and vertical motion ate negligible

For the acceleration and deceleration simulations, the poertrain and/or brak-
ing system dynamics are considered in a very approximate manner. Deterministic
functions of time are adopted which account for typical time delays involved in
these system's responses and the available level of performance for the type of
Nehicle being modelled. The input quantities will be either driving or biakling
fortes for the linear ty-e which assume no slip in the longitudinal motion of the
wheels

The road %ertical inputs consist of crossing obstacles of different types such
that all relevant aspects of vehicfe motion are exercised Foi this purpose, out-
of-phase triangular bumps are transversed, together with terminated tamp and
smusoidal road profile inputs

The quantities of motion which undergo significant variation and ate illus-
trated in the results include sprung mass vertical displacement and acceleration
and itch and toll angles For the unsprung masses vertical displacement of the
wheel's center of gravity, tyre force and suspension trasel aie 'ocluded As an aid
to the analysis. th road profile is superposed in some of the simulation lesults
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3.1.2 Steady-State Manoeuvres

The primary task of the stead%-state maioeusre simulations is to obtain static

and/or stead -state response information in o.-det to assess the linearit% of the

model foi the sailous quantities of motion iuolsed in response to the ahead%
mentioned inputs and disturbances Another important purpose %xs to deternue
directional stability parameters, related to the specific elicle being modelled.

such as static margin understeer or osersteer behaviour. etc Sitmtulation inns

which are executed include cornering with constant speed and different steering
angles, cornering with cnstant steering angle and various forwaid Nelocities and

transverstng sinusoidal road profiles of different heights and lengths

In the cornering at different speed simulation the vehicle is considered to le
drising at various constant speeds when the vehicle is steered by a parabola to
step steering input It is intended to coser a realistic range of operating conditions

of tie vehicle.

The variables uhlch are analysed as functions of forward velocits include pitch

and roll angles, lateral velocity, yasw rate, sideslp angle and latesal acceleration
of the sprung mass and slip angle of the wheels

The cornering at different steering angle simulation is similar to the one pre-
vioasly described, but in this case the forward velocity is kept constant and laiger

values of lateral acceleration a.e obtained by performing the cornering mianoeu-

vres at different values of steering angles
In order to investigate the nonlinearities of the quantiti s of motion in relation

to road disturbances, their beheviour are analysed for the vehicle dris ing over a

sinusoidal road profile with various amplitudes.

3.2 Analysis of Simulation Results

It has been a traditional practice in vehicle dynamics studies [3, 6. 11] to divide
the quantities of motion in groups according to which aspects of vehicle motion

they are related to. As a result of this, the areas of performance, handling and

ride studies have been established Although the purpose of the present work
is to look at the automotive vehicle as a total system, thcse divisions ale well
consolidated by theli use in practice and also they can be very helpful in undel.

standing overall vehicle behaviour and the ielationship amongst the innumerable
variables of motion.

The area of pertormance studies or longitudinal dynamics, is concerned with

the behaviour of the vehicle when driving straight ahead or at very small lateial

accelerations. Vehicle handlig or stability refers to a vehicle's behaviout in re-

sponse to the application of lateral forces and yawing moments caused by steering
inputs and vehicle motion It is also concerned with vehicle lateral stability when

driving straight ahead. Ride studies are concerned with a a vehicle s behaviout

as it transverses unesen road surfaces Under certain operating conditions, these

areas can be studied sepatately, as has often been the case Hossever the coupling

amoigst these variables oust be taken into consideration tinder other conditions.
especially limit manoeuvres The objectives of this simulation analysis is to look

at these couplings, their magnitude and nature
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3.2.1 Definition of a Driving Envelope

Tile concept of a fl% ing enelope has been oi ginated in aeronautical research and
it refers to the operating range of an airplane in terms of its speed noiniall
expressed in mach number. and the altitude lnge which it coveis -% siniilal

concept called drising range has also been used in automiotine engcering [6 aiid
it usually refers to the range of lougitudnvl and latexal accelerations and fosaid

%elociti in bich a car can operate. giken a certain road conditon

In the present case. the concept of driving enselope are used in a different

manner The idea is to define an operating range. or set of operating tanges, is
which a linearised. or set of interrelated inearised conditions. would still be alid

and therefore amenable for control design and analysis purposes This analysis
is based on the previous simulation results

The quantities which are used to define the envelope are longitudinal lateral

and vertical quantities Its eoncept is diagrammatically illustrated ir figure 5

The figu-e represents the limits of linear validity of the models in the X Y and

Z directions

Figure 3. Concept of Diivrig Envelope

The transient manoeuvre simulations are analysed in comparison to the ex-

pected beiaviour of a linear system resulting froni an eigenvaliie-eigenvector anal-

ysis around the corresponding operating points Also, in order to allos a com-

parison between the various linear system representation, that is. etgeinalues.

eigenvectors and system matrices, around different operating points, a ceitain

driving condition will be taken as a refet ence conhfguiation.

The steady-state manoeuvres will be used to obtain the static and/oi gait
relationship between the various variables of motion and the inputs or dititi-

bances in this case it will be possible to analyse the stiength of the coupling

between these variables, and hos linear this couphing is This anal ,'is. togethe

with the previous one, allow the lecision of a range of operation in which a liiea

repiesentation of the svsten is still valid, and further studies. such as model older

reduction. coitrollei analvsis and design foi active systems. etc is possible
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3.2.2 Eigenvalue Analysis-(transient)

The analysis of the transient motion of the previous simulation runs is perfoinied
based on an eigenvalue/eigenvector analysis of the matrices of the linearised svs-.
en. determ'ined at certainoperating conditions. As described earlier, motion

quantities are divided according to which modes they are associated with and to
uhich they, contribute more si-,'ficantly. In this sense, some quantities of motion
are either taken, into consideration or neglected, according to the circumstances
of the simulation run.

Steering inputs are related to a vehicle's handling behaviour which is con.
cerned with the abilityof the vehicle to change directions at the driver's request
and to maintain directional stability at various operating conditions.

The variables of motion which seem to undergo significant variation during
cornering manoeuvres include sprung mass yaw rate, lateral velocity or sideslip
angle, lateral acceleration and roll angle, and unsprung masses slip angles. Re.
lated quantities which are important for the motion, and/or stability purposes,
are the tyre forces. Figure 6 depicts some variables of a typical test.

o -- 0. Y- o s 2

o 1 2 5 0 2 -j

OAS "IS l1.

Ti ) Ti. .)

Figure 6: Response of the sprung mass to a steering input

Vehicle directional stability characteristics are related to the eigenvalues of
the characteristic equation which is associated with the handling modes. How.
ever, a number o" parameters which specify a vehicle's handling behaviour, and
therefore stability, have been derived from simple models and are well established
and understood in the vehicle dynamics community. For handling studies, three
parameters play a central role in defining vehicle's behaviour:

. front cornering stiffness (gradient):

i i



Linear 1[ 7NoniesF

5.0 131.11 1.0 [j 28.96 1.0
22.57 10 ,23.62 1.0

100 1.9 0.97 t1•209
.5.0 9.99 10.0; 9.72 0.9l

20.0 8.13 0.83 7.85 0.85
40.0 5.80 059 15.47 1 0.61
100.0 5.01 1 0.29 I 4.92 1 0.28

Table 5: Handling mode frequencies and damping factors as function of forward
'elocity for 2 tyre models

0 rear cornering stiffness (gradient) and

# location of the vehicle's centre of gravity in relation to the wheelbase.

The value of these parameters determine a vehicle's transient and steady-state
characteristics, as well as directional stability properties The handling mode

characteristics of a vehicle are shown to be those most susceptible to variations in
operating conditions. The quantt of motion which seenms to affect tihe hiaidling

characteristics most significantly is the vehicle's forward velocity. The eigenvalue
analysis of the Jacobian of the nonlinear vehidle model shows that for the vehicle
driving in a straight line, the handling modes, yaw rate and lateral velocity (or
sideslip angle, because forward velocity is assumed to be constant) show the
following behaviour with increased speed:

" decrease in natural frequency;

* decrease in damping factor.

This situation is illustrated in table 5.
Because the eigenanalysis at these operating points results in the full set of

frequencies, damping factors and modes, The effects of steering angle and forward
velocity in the ride and performance modes is also obtained. !t could be observed
that they have not been affected significantly by forward velocity nor steering
angle for the present linear tyre model. The limiting situation for using the

linearised model is loss of adhesion which happens due to load transfer effects.
The variable of motion which is related to load transfer effect and therefore should
be used for a control strategy is lateral acceleration.

Traction and braking inputs are associated with a vehicle's performance. In
the cise of the present model, studies are affected and himited due to the lack
of engine. transmission and braking system models, since the dynamics of these
subsystems also determine vehicle longitudinal motion. However, it could 1),
observed that ride modes are exercised by performance manoeuvres and that the
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xariation of wheel loads affect vehicle lateral stability in combined nianoeuvres
Figures 7 and 8 represents some %ariables of motion for such simulation.

2 0

200 Tim. a0s 7

00 5 i

Figure 7: Response of the sprung mass to a acceleration force

.40%0 ft 4 1
I. (4 2)~

OAS tz I

Figure 8: Response of the sprung mass to a deceleration force '
Road vertical disturbance simulations are aimed at testing vehicle ride modes

The study of vehicle ride modes assumes a contact point model for tie interaction 4
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betiseen tyre and road in the vertical direction. This situation :s equivaleint to a
lumped parufeter model for the tyre vertical force characteristics. Oiie such test
result are illustrated in figures 9 and 10.

0.1 tLA fr00

4 0a1o2 3-

T .05

T- 0.) Th.. (.3

Figure 9: Response of the %% heels to a road input

0.02-

>1.

Figur 10 Repos o3 th sprun 1as to a rodi
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that, for. allvariables of motion, the changes in transient behaviour is completely
negiigible.', Onecanot even distinguish to which height the simulation refers to.

ife tI sae of the v -a's would nbt be shown ~
The behaviour of the sprung mass for the same bump height and for three

different speeds shows that, irrespective of the value of the speed, their transientJ I motion after the inputs have been applied, in the range in which they get excited
by the bump input, are nearly the same, in terms of the frequency of oscillationand dampinig. In this way, vertical displacement and acceleration and pitch and

roll angles show similarbehaviourfor all three speeds for each one of the bump
heights.

These results are interesting in the sense that they confirm that the nonlinear
vehicle model does not present significant differences in its transient behaviour
when under ride mode types of excitation, in terms of forward speed. Together
with the previous conclusion concerning the effect of bump height and constant
speed. these results provide good insight into the use of the linear model approxi.
mation of the nonlinear vehicle model for the area of ride performance. It is worth
noting that this area's main concern, from a control point of view, is aisal;si5 and
design of controlled suspension.

3.2.3 Gain Analysis (steady-state)

The gain, or steady.state analysis, is intended to assess the level of coupling
amongst the variables of motion, the amount of nonlinearities to these couplings
and also to determine vehicle directional stability parameters.

For this analysis, three types of steady-state simulations have been performed:

* cornering at constant speed with various steering angles:

* cornering with constant steering angle at various speeds;

a crossing of obstacles with sinusoidal profile of different heights, and at dif.
ferent speeds.

The results presented in the table 6 are pitch and roll angles, yaw rate, lateral .!velocity and acceleration, sideslip angle and slip angle of the wheels. They are

calculated as a function of the steering angle for the constant speed manoeuvre. .,

For the constant steering manoeuvres the same quantities as above are calculated
in terms of forward velocity.

As it can be deduced from this table, all variables chosen to be retained
showed to be affected by th" steering input. The pitch angle showed the smallest
influence of all. This result confirms the widespread practice to ignore vehicle
pitch from the state variables in handling studies, and when it is considered, its
effect is calculhted in an approximated manner.

It also confirms real vehicle behaviour, because a vehicle does not suffer largepitch angle variations in any normal operating condition. The other variables

chosen for the sprung mass movement, yaw rate (u4). and lateral elocity sn
vehicle body (V,), and ship angle (a.) for the wheels, are the main quantities in
handling studres and their importance for handling studies is obvious.4L



Constant Speed Constant Steering
Input: Steering (rd) , Input: Sneed (i/,,)n

Output - n7 I C I I n Corr.
a, (/rnl) 4.59211 1.0 ?11 a, 1 0.089 1.0

qs (rd) 0.0004 0.98 qs 0.002e.3 , 0.79
q6 (rd) 0.0165 1.0 q8 0.0003
V4 (rd/,)- '0.2304 ' 1.0 nj 0.01 0.9

, (m/s)-. -0.2003 -1.0 i .0.0201 1 0.96

of (rd/s) .. 0 0 L...O *0.0,009 .0.99
L a, rd/s) -0.0277.-t . 0, -0.0005 1 -0.99

Table 6: Steady-state Gains

For the remaining variables of motion elated to vehicle handling. it can be
seen that the model coupling concerning forward velocity, can be adequately
described by linear relations for vehicle steady-state behaviour. This can have
interesting design implications from a control point of view, depending which
strategy is adopted to implement the contiol. If forward velocity is adopted as
a system parameter, the fact that model characteristics change in a linear way
for the steady.state behaviour, together with the conclusions already made about
the transient behaviour, may allow the implementation of some kind of adaptive

control, for example, as a function of vehicle speed.
The sinusoidal profile obstacle crossing manoeuvres are discussed next. The

objectives of these simulations are to verify the linearity of the ride iiodes of the
vehicle model. From a large number of simulation generated frequency responses.
it could be observed that there is no significant influence of the input signal
amplitude in the vehicle vertical modes, indicating that linear approximation are
adequate for these modes as indicated by figure It.

It can be concluded that the present vehicle model, with linear relations for
the spring and damper of the suspension, and for a linear vertical tyie behaviour.
as weli, can be adequately represented by a linearised model, concerning ride
modes behaviour. The limiting factor in this case being the loss of adhesion or
compression of the tyre beyond the assumed linear range. These results show
that the inertia couplings, in this model, for these modes, are weak.

3.2.4 Determination of a Driving Envilope for Linear Control Anal- !

ysis and Design

The discussion about a driving envelope for linear control anaysis and design
is centred at the previous simulation runs.

The areas of vehicle behaviour which are discussed are the same according to
the division established for the simulation runs. The eff'cts and consequences of
considering them together is also attempted to be discussed.

For the vehicle ride behaviour. %ith its present tyre and suspension models
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Figure 11: Frequency Response: Amplitudes 0.05, 0.01 and 0.0125 in

the range of validity of linear behaviour seems to be limited only by the loss of
contact of the wheels with the road. These conclusions are based on the results
of the transient and the steady-state analysis of the previous simulations, For the
transient results it can be observed that there is no significant changes in vehicle

transient behaviour as the levels of model inputs are varied.

Concerning vehicle performance, not many conclusions Can be drawn due to

the limitations of the present model powertrain and braking system dynancs. as
well as the longitudinal tyre model and which play an inportant role in vehicle
performance mode and its coupling to other vehicle modes, most notoriously to

vehicle handling.
Finally, with respect to the handling modes, it seems that for a linear tyre

model, quite adequate linear approximations can be made especially for low value
of lateral acceleration, based on the analysis of the present simulation "esults.

In any cae, linear model which are adaptive with vehicle speed seem to be
recommendable, to -,,ic stfully implement such controls. The coupling with the
ride modes have been Previously described and it does not seem likely that a
steering control %ould ,. fect suspension behaviour, but the contrary is true
4 Conclusions , •

This paper has discus.ed the importance of the derivation of vehicle chassis inod-
els encompassing all aspects of vehicle motion in order to allow the development
of integrated vehicle cntrol. It has proposed an approach to modelling vehi-
cle suspension which is based on simple experimental data and uses concepts
of differential geometry. The derivation, simulation and analysis of the model
was performed using the computer programs SD/FAST. ACSL and MATLAB.
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respectively. The model has been validated and therefore it could be used for
simulation analysis aimed at obtaining operating ranges in which linear approx.
insations woould be valid. For the present model it can be concluded that the
performance 'nd ride modes are not affected significantly by variation in operat.
ing conditions nor the steady-state response by the magnitude of tile inputs The
limiting factors for these aspects of motion are loss of tyre contact, the handling
modes are those most affected by changes in operating conditions and the variable
of motion which seems to have the largest influence is vehicle speed. Hosever it
worth noting that this change do not affect other modes and the coupling occur
at the tyre model more than at the vehicle body model
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NUMERICAL INVESTIGATION OF THE INFLUENCE OF THE SHOCK
ABSORBR;ON THE VERTICAL FORCE TRANSMISSIBILITY OF A
MCPHERSON, SUSPENSION

E. Pisino, J. Giacomin, P. Campanile

Centro Ricerche Fiat
Strada Torino 50
1004? Orbassano (TO)Italia

Abstract

This paper discusses a numerical investigation regarding the
affect of the shock absorber damping %urve on the dynamic
behavior of a vehicle McPherson suspension. The study
focuses on the suspension behavior in the vertical
direction. Both single harmonic and pseudo-random waveforms
were used for the input force. The vertical force
transmissibility was calculated from the wheel hub to the
McPherson dome for various levels of the forcing function.
The results provide a description of the behavior of the
suspension unit as a function of the characteristics of both
the damper and the force input to the system.

1. Introduction

Automobile suspension units include a number of elements
which possess nonlinear characteristics in either
displacement or velocity. It has been noted that correct
modeling of these nonlinear characteristics is indispensable
(1] when studying the dynamic behavior of a suspension unit,
and hence its contribution to overall vehicle vibrational
comfort. It has also been shown (2) that the most important
nonlinearity is that of the shock absorber damping
characteristic. The importance of the damper has stimulated
a number of studies regarding the modeling and specification
of shock absorbers (3-91.
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, ,, .. The objective of the present study is to quantify theinfluence- of the damper curve on the vertical force

transmissibility from the wheel hub to the upper dome. The
upper McPherson dome was chosen as the output measurement
point because it is the location at which the greatest
static and dynamic forces enter the car body from the
suspension unii. "The vertical direction has been isolated
tor the purposes of' this" study because it is the principal
vibrational direction for an automobile on a typical road.

2. The model

Figure 1 presents a McPherson front suspension as found on
small to medium European automobiles. Figure 2 presents the
model developed for this study which consists of seven node
points as defined in Table 1. Three of the nodes are centers
of mass. The first center of mass is that of the lower arm
(ma), the second is that of the hub/wheel/strut assembly
(no), while the third center of mass is the upper half of
the strut assembly (m). The mass and inertia values are
listed in Table 2.

Other elements of the model are the linear main spring (ks),
the damper (c) and the linear translational (Ktx, Kty, Kz,
K6x, L6y, Uz, K7x, KTy, Kvz) and torsional (Tix, Tty, Tiz,
Tx, T6y, T6z, Tix, Try, Tz) stiffness parameters of the
rubber bubhings that attach the suspension to the car body.
Thesco stiffness values are listed in Table 3. The model also
includes a mpherical joint, a slider joint and two
cylindrical joints which apply the kinematic constraints of
the suspension design. The end of travel snubbers were notmodeled in this study.

The force input to the model was applied at the hub (m) in
the vertical direction. The force output was measured at the
McPherson dome in the vertical direction, which corresponds
to the force transmitted across the vertical stiffness Kiz.
The suspension unit is not attached to the vehicle in the
present study but rather to ground (Figure 2). The model
simulates a bench test in which the suspension ettachment

points are mounted to a rigid frame.
Figures 3 and 4 present the three damping curves considered.
The damper of Figure 3 is representative of a medium
European automobile and will hence be referred to as normal
production. The damper setting is highly asymmetric,
producing most of the damping force in the rebound stroke
(positive velocity). This damper curve can be divided into
two regionq indicated as I and II. If we define the viscous
dampir coefficient as

L4 6
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Figure 1) Typical McPherson front suspension.
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Figure 2) McPherson front suspension model.
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Table 1) Node points of the suspension model.

NODE x, y AND z COORDINATES Imm]
1 (30.6, -586, 612)

( 16, 592, 333.5)
3 (0, -747, 55 1

J 4 (-4.3, -708, -5i.5)

5 (100, -500,50)
6 (-10, -398,-38)
7 (302. -398. -33 5)

Table 2) Mass and inertia data of the suspension model.
MASS or INERTIA VALUE

KuI 1: r Kc I mm" mm]I

m2 1
W3 38.8
mn5 3.5 '

( 12x, 12y, 12z) (51, 1, 1( 13x, 13y, 13z ) (650E3, 110OE4, 550E3)

S5x. 15, 15z) ( 14E3. 27.3E3,41 3E3)

Table 3) Translational and torsional stiffness
values of the suspension model.

TRANSLATIONAL or VALUE
TORSIONAL STIFFNESS r Nam ] N mm/rmdr]

Ks 15
(Klx, Kly, K1z) (1786,1786, 570)

(Tlx, Tly, Tlz) (10000,10000,10000)
( Kfx, K6y, K6z ) ( 312, 4458, 4458 )

(T, T6y, T6z) (10000,10000,10000)
( K7x, K7y, Kz ) (588, 1214. 1214)
( Tx, T7y, T7z ) (10000.100)0.10000)
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df
C (. -1)dv

where f is the instantaneous force and v the instantaneous
velocity of the absorber, we can describe the curve used in
this study as having a varying damping coefficient in region
I but constant damping coefficients in region II.

The second damping curve studied (Figure 4) was linear, and
was derived from the normal production curve. A linear least
squares interpolation was performed to obtain a constant
damping coefficient equal to the average of the normal
production damper over the velocity range of interest. A
correction (shift) was performed so as to produce zero force
at the origin.

The third damping curve (Figure 4) is bilinear. It is
obtained by rotating the two halves of the viscous damper by
a constant but opposite angle. This rotation maintains the
same area under the damping curve, but introduces a
discontinuity at the origin.

The three damping curves chosen are different in nature, but
remove similar amounts of kinetic energy in the velocity
interval of this study (0 to 1.2 m/s).

3. Inputs studied

Two types of force input wore chosen. The first was single
harmonic input (sine) and the second was a band-limited
pseudo-random s.,nal (Figure 5). The frequency range of
study was from 0 to 50 Hz. The force levels chosen were
representative of typical operating loads.

Harmonic input was chosen for two reasons. The first is that
a single steady state harmonic oscillation permits a simpler
evaluation of system nonlinearities. There are many studies
in the related literature which utilize this approach C10-
14]. The second reason for choosing a harmonic input is that
there exist road inputs such as long road undulations which
are similar in nature.

Eight seconds of time domain integration were performed with
each sinusoidal force input in order to obtain the system
response. The integration time step utilized was 512 points
per second. One hundred frequencies were evaluated in the

range from 1 to 50 Hz. Five different peak force amplitudes
were also utilized. For the three damper characteristics
studied this gives a total of 1500 integration runs.
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The psu67ad' p~ nput was, chosen-so. as- to have a
band-limited altirnative to-jiingle harmonic -input. M~ost road
inputs, havie'significat 'content over, a' wide.-frequency band.
The frequencyk content oi:thisifipuicovered the-,range from 0
t) 50 Hi,' -ithoni- 'frequency 'line every, .125, Hlz,' and
randomized -phiiases '4Sevie 'dfferent.;RM3- levels were., created
by first gqenerting' a&baiesignal', then multiplying it by
six constant values. This~had ,the of fect~of changing-the RMS
level 'while',miintiing ±'.he. crest 'factor (3.95) and phase
relationihipi'Ainiltsed'. An ,example of pseudo-random force
inputispeend nFiue5

As in the casi 6f single harmonic input, eight seconds of
te domain integration were',performed with a time step of

uti'ied- For thee diferstdedthi gavfore altotls ofr
utiize.-Fr secod eve n diifrxtdethi gSaore level wer

21 itgainruns.

4. Renults

The model of Figure 2 was assembled and solved with the
ADAMS (Appendix 1) program for the various inputs studied.
The behavior, of the suspension unit was studied by
calculating' the gain of the force transmissibility in the
vertical' direction from the hub (m) to the McPherson dome .
(Kiz stiffnes .s). The gain was defined in two ways. For the
case of- single-harmonic force input the gain was defined as

Gain" (2)

where: y -maximum output force

x -maximum input force

For the ease of the band-limited pseudo-random force input
the gain was chosen as

Gain = H() -Ix (3)
Sxx

where: Sxy - cross power spectral density
Sxv - input power spectral density
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Of the possible, estimates' for the frequency response
functin,- the 8i 'estimai6r -waks'chien beiause" it produces
the betunbiase'diermkdeof ~th~s~ystem"(15] in absence
of noii on't4heinput. This'-charitseritic, is appropriate 'in
the present . dy/,becaus 'the'i' npt force is 'specified, with
noise' due-t6,eirgy transffer'irisent, 6nly 'on ithe'lout put.

Figur'e 6 pr~eontsthe- Zorce-gaiin' 'f the suspension in the
vertical- diredtion ,for 'eich of 'the " three 'dampers when
subjected :tc single ;harmonic; force' inpUt's, of diffeent peak
aimlittd level. The results ontained-with' the" linear' damper
indicate- that the entire model is basically linear. The
geometricalitnonlinearitie8s were' fund&'to' be' small for the
suspensions rotations induced (±3' degrees). The situationchanges somewhat in 'the 'case of the bilinear damper, where
nonlinear effects are ' now visible 'in the immediate
neighborhood of the main suspension resonance (2.95 Hz).

The most pronounced nonlinear effects are produced, however,
by the normal production damper (Figure 6-c). Two basic
types of behavior are immediately visible. The first type
regards. those integration runs 'in which the achieved
velocities.,of the- diaper were confined' to only the first
region ,of the damping curve, that in' which the viscous
damping ,coefficient "varies. For 'region I oscillations,
increases of -the input force produce an increase in the
harmonic content 'of the transmitted, force. The harmonics add
to the transmitted, force at the 'driving frequencies thus
increasing the system gain as calculated by equation (2).
The second type of behavior is produced when the damper
works for significant periods of time on both the first (I)
and second (II) regions of the damping curve. In this
situation the system gain becomes more linear as the input
level rises (using more of the region of constant viscous
damping ratio).

Another representation of the behavior of the suspension I
unit when subjected to single harmonic input is provided by
Figure 7, which presents acceleration response spectra of
the hub/wheel/strut assembly when subjected to 3 Hz
sinusoidal force' input. Spectra are presented for both the
bilinear and normal production daWpers. The Figure plots the
ratio of the acceleration response to t:;o peak force as a
function of both frequency' and peak force. For the normal I
production damper, the growth of harmonics with increasing
input level is evident from the spectra for the sinusoidal
force inputs of 250, 500 and 750' Newtons. The reduced
harmonic content of the acceleration response when
oscillating in both region I and 11 is visible in the data
relative to the 1000 Newton input force. Two further points
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of interest relative to the data of the normal production
damper are the reduction in even order harmonics with
increasing input force and the reduction in average damping
level with increasing amplitude of the input force.

Figure 8 presents the vertical gain of the suspension when
* exposed to the band-limited pseutio-random force input. Use

of this input and of the H1 estimator for the system gainhave provided clear evidence of the energy transfer from thesystem main resonance to both odd and even order harmonics.

The harmonics are more strongly excited in the case of the
bilinear damper than in the case of the linear damper, where
the nonlinearity is only geometric. For the normal
production damper, all harmonics of the suspension main
resonance are clearly visible in the response up to 9th
order. The pseudo-random results confirm the previous
observations regarding the two principal regimes of behavior
with the normal production damper.

5. Transition points

In the present study, the transition from region I only to
region I and II oscillation plays an important role in the
behavior of the suspension with th, normal production
damper. The results indicate that the suspension behavczvery nonlinearly when oscillating below the transition
points, but becomes more linear as oscillations explore more
of region II beyond the transition points.

Figures 9 and 10 present the probability densi*ty function
(PDF), cumulative density function (CDF) and damping curve
for the two types of oscillation identified. Figure 9 is
representative of a region I only oscillation while Figure
10 representative of a region I and II oscillation. The
second example remains for a significant number of time
steps on region II of the damping curve.

Tha authors propose that the reduced harmonics, and more
linear behavior of the suspension with increasing amplitude
of the force input is to be attributed to the increasing
usage of the linear segments of the damping curve (region
II). While region I oscillations are exposed exclusively to
a nonlinear damping law, region I and II oscillations are
exposed to linear damping for a portion of the cycle that
increases as the force amplitude increases.
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6. Conciusions and recommendations

Recent research has indicated that the shock absorber is the
major cause of the nonlinear behavior of automobile
suspensions in the range from 0 to 50 Hz. The present study
has investigated the effect of the damping curve on the
vertical force transmitted from the hub to the dome of a

* McPherson suspension unit.

The vertical force transmissibility from hub to dome for the
* case of the linear damper has shown that the geometrical

nonlinearities are small in the range of input forces
studied. The vertical force transmissibility with the
bilinear damper was found to be similar to that of t',.
linear damper, but with a stronger harmonic content.

The normal production damper was found to produce a wide
range of suspension characteristics depending on the level
and type of input. This damper produced highly noticeable
harmonics. The results suggesW that the location of the
transition points from region I to region II of the damping
curve plays an important role in determining the overall
characteristics of the suspension unit. The results also
suggest that the harmonic content of the suspension response
is very sensitive to the local variation of the viscous
damping coefficient, the strongect harmonics being
specifically associated with the regions of highest
variation in the viscous damping coefficient.

Areas of future study include: performing a detailed
investigation of the energy transfer mechanisms of the
current suspension model, investigating the effect of
introducing end of travel snubbers to the current suspension
model, and adding a tire model and quarter car free mass so
as to investigate how the shock absorber influences the
force input produced by known road profiles. These
activities will further the knowledge of suspension

behavior, thus making easier the interpretation of the
complex data generated by complete vehicle models and tests.

APPENDIX 1

The object of this Appendix is to describe in very broad
terms the operation of the ADAMS program. ADAMS is an
environment for building and solving models of mult-body
(lumped parameter) mechanical systems. An ADAMS model is a
data set describing the geometry of a system, the mass and
inertia of its components, its stiffness and damping
properties, the boundary conditions (constraints) and the
system inputs. The data is used to assemble a system of
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equations by applying the equations of motion of Lagrange to
each mass of the system

d jLt aL X@.Ai=rj forj 1,..n (Al)

0i = 0 (A2)

where L - the Lagrangian (T-V) c iT - kinetic energy
V - potential energy
q •vector of generalized coordinates
F vector of externally applied forces

- vector of rigid constraints
A - vector reaction forces due to the constraints

Equations Al and A2 describe a constrained equilibrium of
the form

fZ1I o (A3)

where ZF and 0 are nonlinear functions of the system states,
the Lagrange multipliers and the time step

EF - f(,q,q,A,t)

- f(4,q,t)

The second order terms in equation A3 are reduced to first
order by the introduction of a new dependent variable

U - 0  (A4)

where u is a vector of generalized velocities. Therefore the
sum of force term of equation A4 becomes
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The above formulation produces a set of differential and
algebra.c equations. These equations are solved by utilizing
a Gear predictor-corrector algorithm (16-19].

The predictor operations estimate the system response at the
next time step (n+l) based on the response at previous
points. A polynomial of order k is fitted to the previous
values of the system states of each of the generalized
coordinates of the system, and the polynomial thus
calculated is used to evaluate a truncated Taylor series
expansion to obtain the system response at time n+l

Yn+1 = Yn + - h 
+ 

- - --2hz (A5)a t 21 at 2

where y is the system state and h is the integration time
step. If the estimate of the system states does not satisfy
the equilibrium condition of equation A4 to the desired
error tolerance, corrector operations are applied to adjust
the state variables.

Corrector operations begin by utilizing the estimate of yn+l
obtained by the predictor to fit a new k order polynomial to
the generalized coordinates. This new polynomial is used to
evaluate the derivative at time n+l, which is then used to
obtain the new estimate

k

Yn+i - -h io yn+l + I aj Yn-j+ 16)
J-1

where go,aj are the Gear integration coefficients. The above
implicit equation is iterated until the solution satisfies
the specified error tolerance.
The solution of the system equations provides all the
forces, velocities and accelerations that define the
boundary equations of the system masses.
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IMPACT DYNAMICS OF MULTIBODY SYSIE 5 WITH FRICTIONAL CONTACT
L SINGJOIT COORDINATES AND CANONICALEQUATIONS OF MOTION

oM. SEABRA PEREIRA P. N KRAVESH
Departaouento e ndendato oen acd Dcpse lo Aeropace and Mechanical Eng
cnsmtoeno Tcmso ledUicao n T miverst y 0o tis d tt
1096 Lisboa. Lisboa CODEX Tucson, AZ 85721Portugal USA

ABSTRACT : This paper presnts a methodology in comptationl dyndmics for the analy of
rmehamcal systems that undergo itermitent moon. A canotical form of the,,ee tiarns of motio bs
drived with a onutmal set of coordmat and eq uations of used tin a pirncedu for balact g t g
momenta of the system ov r the period of mp rt. calcting ro the body momlent. velocriie
escoamtues and rebounds. The rfect ofdy fcon is d scrsed and a contact lw s proposedfo Ti
present fomulathon i extended to open and closed loop mechanicalsystem where the jumps a the
cont's momene ad t e impulsv forceappcon of this methodology u alluslaed wth th stady of

pacton of pen loop anmd closed loop examples.

1. Introduction f

Impact occurs in many mechanical systems, such is crushing and feeding machinery.
Ths multibody systems undergo intermttent motion essenaly characterized by
bsconnayses they encounte when two bodies withinth es systems collide.
bre use of the canonca l form of equat ons of moion in mpact analysis involving

compulse and momentum variables, has been presented in several text booksl-3], where
soluaons are obtained for velocity changes during impact of paricles and simple
examples of rigid body collisions. The problem is more complex for kinetically

corsraed mechaticaa systems, once the change in momenta and veloesd i= not
solely due the impiv forces of the colliding e s but also frvolve the changes in
the reactions of the ktinematic constraints.

Piecewise analysis formulations have been developed for the solutions of the
rebounds in the intermittent motion of the mechanical systems [4-61. During the period

of the fmpact f the integrations of motonthnoteuamotion is halted and a momentum
balance analysis is performed to calculate the velocity jumps. impulsive forces are a

byproduct of these calculations. In these methods it is assumed that no s egn rcant clange
in m the sysem configuration occur during the collison time which is considered small
comp.e 'oatpcal time scale of die motion before and after the imnpact

SLankaran: n Nikravesh (71 solved the direct central friction " npact of a
Smechanical system using a canonical form of the equations of motion expressed in terms

of a large set of a Cartesian variables. The work presented here stans from that Ctesian
canonical form of the equations of moion, then the equations are convee to amima
set of equations in terms of a set of joint coordinates and associated generalized 4tmmn

momeri

50



The resulting formulation together with a proposed contact law corresponding to the
general oblque impact problem between two bodies of a mulubody system is applIed to
some examples. The role of the coefficient of restution and the coefficient of friction is
discussed and a methodology is suggested to establish the conditions whether or not
sliding or suction can take place.

2. Equations of motion

The equations of motion can be described in terms of different sets of coordinates. If the
number of generalized coordinates is greater than the number of systems degrees of
freedom, then algebraic equations are required to show the dependency of the
coordinates. One such set of coordinates which leads to defining algebruac constraints
for the kanematic joints is the so called absolute cartesian coordinates (8].

Another set of generalized coordinates which can provide a minimal set of equations
is known as the joint coordinates. In the following sections, the equations of motion in
terms of the joint coordinates are discussed.

2.1. STANDARD FORM

In order to specify the position of a rigid body in a global non-moving XYZ coordinate
system, it is sufficient to specify the spatial location of the origin (center of masq' _'d
the angular onentanon of a body fixed 4I coordinate system. For the ith body in
multibody system q, denotes a vector of coordinates which contains a vector of
translational coordinates ri and a set of rotational coordinates. Matrix Ai represents the

rotational transformation of the 4ilii axes relative to the XYZ axes. A vector of
velocities for body i is defined as vi, which contains a three vector of translational

velocities ri and a three vector of angular velocities (Dj. A vector of accelerations for this

body is denoted by vi which contains ii and 6s. For a multibody system containing b

bodies, the vector of coordinates, velocities and accelerations are q, v, and vi,
respectively, for body i=ll...,b. Also a generalized mass matrx is denoted by M and a
vector of generalized forces , is defined for the multibody system.

The relative configurations of two adjacent bodies can be defined by one or more so-
called joint coordinates equal in number to the number of relative degrees of freedom
between these bodies. The vector of coordinates for an open loop system is denoted by O
containing all of the joint coordinates and the absolute coordinates of a base body if the
base body is not the ground. Therefore, vector 0 has a dimension k. equal in number of

the degrees of freedom of the system. The vector of joint velocities is defited as e. It

can be shown that there is a linear transformation between e and v as (9-1I.

v=BO (I)
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where B is a nxk matx. When the number of selected coordinates is equal to the
number of degrees of freedom, the generalized equations of motion for an open loop
mulubody system can be written as

Me = f (2)
where

M = BTM B (3)
f = BTfg-M h6" ~) (4)

In order to solve these equations, a set of initial conditions must also be defined as

6(o) = o, () = 0 (5)
Assume that there are one or more closed kinematic loops in a multbody system. To

derive the equations of motion for such a system', each closed-loop is cut at one of the
kinematic joints in order to obtain an open-loop system without defining ay joint
coordinates for the cut joints. Therefore, vector of joint coordinates 0 has a diraension k
greater than the number of degrees of freedom of the closed-loop systemr. If the cut
joints are reassembled, the joint coordinates are no longer independent. Therefore, there
exist algebraic constraints between the joint coordinates as 112].

%F(0) - 0 (6)

The first and second time derivatives of the constraints are

4' a C6 = o (7)

, M Cd+c= (8)

where C is the Jacobian matrix of the constaints. Then, the differential equations of
motion of Eq. 2 are modified as

M -_CTv = r (9)

where v is a vector of Lagrange multipliers.
Eqs. 6-9 represent a set of differential algebraic equations for a closed loop syst'I. A

set of initial conditions, such as the set given by Eq. 5, but consistent with the consinis
of Eqs. 6 and 7, must also be defined. These equations can further be reduced to a
minimal set of second order differential equations, equal in number of the degrees of
freedom of the system (12).

2.2. CANONICAL FORM

The equations of moton for a mulubody system can also be derived in terms of the total
mmenta of the system. The process of converting the equations of motion described in

terms of a large set of absolute accelerations to a canonical form has been shown in (7].

..k._ __ I
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In order to transform the open loop equations of moton of Eq. 2 to the canonical
form. a vector of joint momenta p is defined as

Me = p (10)
xhere

p=f+MO (11)

Eqs 10 and 11 form a simultaneous system of 2xk differential equations of the first order
which can be considered as the solution of the Lagrangean problem assuming that 0 and
p are vaned independently of each other (13]. For these equations, an appropriate set of
initial conditions must be defined as

e(0) = e , p(0) = pO (12)

For closed loop systems a number of prescribed scleronomic conditions may be given
by Eq. 6 and a mixed representation corresponding to the general canomc tansfornaon
tis defined as (131

M9 _CT, = p (13)

where vector of Lagrange multipliers is defined as a = v. The time derivative of Eq.
13 yields

f + , 6- _% C(14)

Equations 13 and 14. in conjunction with Eqs. 6 and 7, provide the constraned equations
of moton in canonical form. A proper set of initial conditions such as the set given by
Eq. 12 and consistent with the constraints of Eqs. 6 and 7 are also required&

Numerical soluton of the canonal equations of motion, for either an open or a
closed loop system, can be obtined by i ducing integration arrays as

~At every integration time step,}j array is integrated to obtain y. For open loop

systems, vector 0 is used to determine the absolute coordinates q, then vector p is used to

obw. O and then v is found from Eq.1. Eq.ll yields , which in addition to 6 provide

all the elements of j in order to continue with the integration.

For closed loop systems, vector 0 is found from the solution of Eqs. 7 and 9, where a is

also found at the same time. Then Eq. 14 is used to find 0. The rest of the process is the
same as that of the open loop systems. A possible problem with this procO ure is that due
to the accumulation of numerical errors during integration, the position consraints of Eq.
6 may become violated. Different techniques for eliminating the possibility of constint
violation can be found in 18).
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In a piecewtse impact analysis, it is assumed that the contact between points P, and P)
lasts for a short period from t() to t(+), dung which the configuration of the system
does not change. As a result. the dynamics of the open loop and closed loop systems are
governed under this smoothness assumption by Eqs. 10 and 11 and Eq. 13 and 14,
respectively. A contact -impact law involving the relative velocity r and the
generalized forces f must also be provided.

3. Points of Contact and Relative Velocsties

Assume that an impact occurs between bodies i and j of a multibody system. The relativevelocity between the points of contact P, and Pj is written in terms of the absolutevelocities of these points as

= Div, - Div)
= D1jv (16)

where Dij is a 3xn incidence mamx and it is a function of the coordinates of bodies i
andj only. Substituting Eq. 1 into Eq. 16 yields

v, R 6 
(17)where R = Dij B is a 3xk matix describing a 0 dependent linear mapping of the

generalized veloc(7es.)

The relative velocity vector vr is represented by its components relative to some
chosen orthonormal base (n, tI, 2)

We shall assume that the unit vector n is defined in the normal direction to the contact
surfaces and directed toward body i. A schematic representation of the contact betweenbodiesitand jis shownsnlig. I.The component of vector vr along the normal direction is

Vrt . nTvn

. n
T

(R6)n. (CT.)n (18)

whete
cT TR (~

is a k vector. The tangential component of Vr corresponding to the slip velocity is
denoted as vt and lies in the tangential plane ( 1, 2), perpendicular to n such that

r  vt + Vn  (20)
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a material coustant based on the common assumption that local inelastic materialbehavior is solely characterized by that coefficient.
From Eq. 20 the relative velocity jump during impact is given by

AVr = Art + Av,, (22)

Substituting Eq. 17 and Eq. 21 into Eq. 22

RA6 = Avt - n(l + e)cT6(') (23)

This equation involving the coefficient of restitution, the incoming velocities, thejumps in the generalized velocities and slip velocity will be found to be an importantgeometric relationship in the piecewise analysis of impact.

4. Impulsive Forces and Impulses

During impact. a pair of impulsive forces, f(1). act at the point of contact between bodies iand j. Superscript (i) indicate the impulsive nature of these forces. The corresponding
power of the pair of contact forces can be written as

oTRTr(') (24)

where

= RTf(&) (25)

is the k-dimensional generalized force vector associated with the impulsive force f(i).
The impulsive force f(i) can be decomposed along the normal direction n, and along atangenual direction t in the plane ( t , t2).The direction of t will be discussed later ori.
Thus

f= n. & + t.f) (26)

and

f() = (n.f O +t.t ))

a=cnf )+¢tc,) 
(27)

where ct is defined as in Eq. 19 and using t instead of n.
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The generalized impulse vector x due to impulsive forces f(l) is

- t ( t)f ')d

SC' ft,.,ff',)dt + c
1

, f>dt (28)

where rn and ict are the normal and the tangcrital impulses due to impulsive forces fn(')

and ft0') acting in the normal and tangential directions, respectively.
The method of obtaining the generalized impulsive forces f() and the generalized

impulse ?i through the linear mappings Cn and ct suggests the usual concept of virtual
motions at fixed time and expressed as a family of configurations 0 (e) depending on a
real variable, e, in a differentiable manner. with subsequent calculations made at cormtL

S. Open Loop Systems

From Eq. 10 thn generalized velocity jumps can be obtained

O = M't Ap (29)

Integrating the canonical equations of motion described by Eq. II for the period of

contact, the generalized impulse vector Ap is given as

Ap = (.) f dt +f MG dt (30)

The generalized force vector f can be described as the sum of two generalized
impulsive and non impulsive forces

f = 0) + f(ru) (31)

Since the period of contact is assumed to be very short, i.e., almost zero, only the
impulsive forces have nonzero impulse; all other forces are finite including the
gyroscopic and Coriollis forces. In fact it can be shown that integrating by parts the last
term of Eq. 30

Jt(+)
(32)

IMI Mt
') =0
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therefore Eq. 30 becomes

AP f .(')dt x (33)

5. 1. THE SLIDING PROBLEM FOR OPEN LOCP SYSTEMS

Assurning that. during contact, the process otangentafoc gerainsthtody
friction, the impulsive force f(l) can be written as

f(') = fn (n + 90t (34)

where gs represents a friction coefficient. The generalized impulse vector yields for this
case

Substituting Eqs. 35. 33 and 29 into Eq. 23

RM trr5 (cn + siet) = Avt - n(1 + e)cT6(1  (36)

Pretnsldply both sides by nT and realizing that, by definition: Avt is perpendicular to n;

nTn-I and from Eq. 18. the scalar value Of vn is guiven by v() = CT(- then

nTRM'Ix (c, + 9ci) = -0 + e)4 1
; (37),

This scalar equation can be solved for the normsal impulse

Xn (I + e)v(' (8

5.2. THE STICKING PROBLEM FOR OPEN LOOP SYSTEMS

To solve the sticking problem the impulse must be described by Eq. 28 and an extra
kinematic condition has to be considered as, in a sticking impact. the outgoing relative
tanigential velocity vanishes, thus vt(+) - 0 and Avt-vt(-). The slip velocity for t-t(-) can

be epressed in the more convenient form

4() = -nvi,,3

=(R-n.4)O(

$1



which allow us to write Eq. 23 in the form

RAO = -(R + e n. cnT)e(- (40)

In order to write an impulse equation ,substite Eqs. 28. 33 and 29 in Eq. 40 to get

RM*I(c,;r + c1It) = -(R + e n.CT)~ (41)

F~inally, pretnultilying the preceding equation by nT and by tT a set of two

mornemrum balance impulse equations can be written in matrix form as

n c-~c 1-Mc (42)
c c c1  I 1 ~ -

Equation 42 is a set of two linear equations in terms of thr normal and tangential
components of impulse.

6. Closed Loop Systems

The change in the generalized joint velocities during impact must s'~tsfy th, zonstrainis
of Eq. 7

A6= 0 (43)

From Eq. 13 we have

46e= M-I(Ap +CTAC) (44)
Then.

CM*(P+CT~A).O (45)

Integrating the canonical equations of motion described by Eq. 14 for the period of
contact yields

Me CTO dt (46)

All the forces in the right hand aide of Eq. 34 are bounded except for impulsive
forces. The integral of this bounded forces, including the term containing a are zero.
This can be shown easily by writng

dCT CTO +CTa (47) '

di0
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then,

f~C~a dt CT(; ~ cTf41 a di 48

=CT,%( -CTAar= 0

which allcw us to conclude that the change in the total momenta for closed loop systems

is still a res. It of the impulsive forces as described by Eq. 33.I 6. t THE SLIDING PROBLEM FOR CLOSED LOOP SYSTEMS
Using the same proced ire as in section 5.1 and taking in consideration Eq 44 instead

of Eq. 29 an equivalent of Eq. 37 is then obtained for closed loop systems

Equations 46. after substituting Ap from Eq. 33 have the form

CM t I(Cn + gci)n +CMICT6A = 0 (5Si)

which can be appended to Eq. 50 and then written in the manrix form as

[C1 C, CM1I(C. +liC,) 1A l 0 (2
eM4CT CIM'I(C. +sec)j I + eWv. (2

which can be solved for the internal impulses Aa and the normal component of impulse
7e acting at the point of contact.

6 2. THE STICKING PROBLEM FOR CLOSED LOOP SYSTE-MS '

Using the same procedure as in section 5.2 and taking in consideration Eq. 45 instead of

Eq. 29 an equivalent of Eq. 42 is then obtained for closed loop systemsrCM.ICT Cmc. CMtc ]el 0
C'M"'C cM'C. c.M--'c ef= -(I+ e)v. (5*j)
c'M4CT  CTM 1C. C1M*1c, ~t,~ -V.

wich can be solved for the internal impulses Acr atid the normal and tangential
copnnsof inpulse xt acting at die point of contact.



7. Contact Law

When contact is in effect a contact law is now suggested for the traditional isotropic
Coulomb law of friction involving the following,

Svt( ) is zero if the magnitude of the tangental impulse is less then the g times themagnitude of the normal impulse.
-when v, ( ) has a nonzero tangennal component. vt(4")* 0 the tangential impulse has a

magnitude g times the magnitude of the normal impulse.
For pianar oblique impacts this contact law involves the following-

If vt( ) = 0 then xt : cn (54)

If vt(*) e 0 thenxt -'vcn (55)

and taking, for the moment

= --- (56)

which means that the tangential impulse acts along the opposite directon of vt(-). This is
a plausible assumption which will be shown to correspond to a maximum energy loss in
planar impacts. However in spatal oblique impacts the tangental velocity generally
undergoes a change in directon which enables a direct determination of the directnn of
the tangential impulse. Formulations using standard Convex Analysis (14-15] have
shown that the Coulomb's law of friction is exactly similar to a law ofperfect plasncity
and can be derived from a "principle" of maximal dissipation. As a result the direction of
the tangential impulse, t, should be such that the energy loss during impact is
mximued.

8. Velocity Jumps and Rebounds

Procedures for updating velociies after the impact are now obtained. Without loss of

generality consider the sliding problem for open loop systems described in section 5.1
Taking in consideration Eq. 33 and substituting Eq. 38 in Eq. 29 the jump in the

generlized velocities can be obtained
A^ • I, (I + e)v(

")

do = -,M"t(cn I e) 1, n (57)
enM (en + leit)

And from Eqs. 23 and 21 the jump in the tangential velocity can be obtained

Av, = -(R -ncT)Ml'(c. + t) (l +e)v()5
cnM" (C: +gc t )
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A procedure for updating velocities in a general oblique impact can be stated for
closed (open ) loop systems as.

ALGORITHM.

Knowing the positions and velocitis at t()

1. Find ie and it from Eq. 53 (42)
if it, .:5jtn go to 2
if nt > pnn, go to 3

2. We have sucoon with vt( ) = 0
2.1 From Eq. 28 evaluate Ap = Cnlrn+ctt
2.2 Go to 4

3. We have sliding
Find nn from Eq. 52 (38)

4 Evaluate A9 from 44 (29)

5. Update joint velocities as 0 0~) 0 - A8

6 Resume with integration

9. Examples and Numerical Results

The purpose of this section is to apply the present piecewise analysis to typical examples
of mechanical systems and to show the validity of the method by examining the unpact
responses.

9.1. SLIDER-CRANK MECHANISM

This first example is taken from reference (71 where it was solved using a piecewise
formulation with equations of motion described in terms of a large set of absolute
cartesian coordinates. This is a closed loop multbody system impacting a sliding body.
A schematic representation of the system is shown in figure 2. A set of relative joint

coordinates 01, 82, 03 and 04 are used to describe the configuration of the system. Due to

the closed loop, 01, 02 and 03 must satisfy Eq. 6, and their first time derivatives must
satisfy Eq. 43.

The slider crank is driven by a restoring torque such that the crank maintains almost
t a constant angular velocity. At some instant, the slider (body 3) impacts the free slider

(body 4) which is driven inernally to the left at a constant speed. A coefficient of
restitution e = 0.83 between the blocks is considered.

This case correspond to a central impact problem therefore no tangential relative
velocities are observed and no tangential impulsive forces are developed between bodies
3 and 4 durng the impact.

F 
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11- 153 m ml-m3. 038kg
12.-.306 m m2. 076kg
01t- 150ra/S m4. 190 kg

Table 1. Co p rio 
7of xe

45

The impulted lrom ssaayinhs of kinticenrgyncdc e by 1 thcma is givenze by tale1

2 2,

resultng, for central impacts ini the form

*TL 2cMcn Ie5  v (60)

For the general oblique impvacts the induced energy lots can be shown to be

* T =~~~(nm+2~m+gtq
2 m5)-n(a+~4) (61)

where

cTt n m-C cwt in - T *It

s'c TN_(62



Figure 3 shows a plot of a non dimensionahzed form of the energy loss of the system
(AT/T(') ) for the range of the coefficient of fnctton 0 < c I . and for three different
masses of the meinally dnven slider (case 1: m = 0.19; case 2: au = 0.95 and case 3.
M4 = t 9).

For case 1. with e=O. the energy loss is almost equal to the initial kinetic energy of the
system before Impact, wtuch means that the system came to a halt. For case 2 and 3.
where the mass of body 4 was increased, only 54% and 32%, respectively, of the initial
kinetic energies are dissipated during perfectly plastic collisions (e = 0) Case I s aparticular case where the generalized mass of the crank and slider is equivalent to the
inetialy driven mass. Case I can be reasoned to be "equivalent" to the perfectly plastic
cental impact of two particles that is known to come to a halt when these masses are
equal, thus releasing all lanetic energies.

i --- X En "gy Loss I
q~~ En E LOS

0,6

0,0
0,0 0,2 0,4 0,6 0,8 1.0

Coef. Restitution e

Figure 3. Energy loss versus the coefficient of restitution

9.2. KANE'S DOUBLE PENDULUM -PLANAR CASES

0 2 1. Case I. Fig. 4a) shows two slender rods connected together and to a fixed support
l,' revolute jo:nts, the system is only allowed to move in the XY plane.

Mhe rods are identical and the approaching joint velocities are 01=-1 and 02= -1
(tud/). This configutrdton implies an incoming velocity vr() = (.2.683t - 1.309n).

Figure 5 shows the tangential velocity, vt(+) for 0 c e L land -.45 < g: < .45.

Positive values of g correspond to tangenual impulses in the t direction whereas negative

values of p, corrspond to tangential impulses along the positive X direction. A plot of
the energy loss as defined in Eq. 61 is also shown in figure 7.
!z car. be observtd that negative values of gs correspond to smaller energy losses or even
ek:ergy gains. On the other hand, sucking is not always possible. For example, for

vaijes of e<.3, even for large values of g there is always a positive vt(+) For larger
vahes if e, suclang can only occur, eventually with energy gams which is not plausible.
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Figure 4. Kanes examnples
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Figure 5. Tangenual rebound predictions for the Kane's pendulum a)
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Figure 6. Energy loss for the Kane's pendulum a)

9.2 2. Case 2. The double pendulum illustrated in figure 4b) was also anlysed. In this
pendulum the first rod is in the verocal position. For this configuration and assuming
the same angular velocities as in case a) the.relative incoming velocity is now
,v) = (-.707n - 2.844t).

Figure 7 shows the predicted outgoing tangential velocities for 0.5 e <l. and
- 4 5 g 5. 4 5. The results show that this pendulum never sticks, even for large values
of g the tangential outgoing velocity is always positive.

2.0

0,o

-0,4 -0,2 0,0 0.2 0,4 0,6

Coc ciit of Friction

Fifure 7. Tangenual rebound predictions for the Kane's pendulum b)



These results clearly show that the impact conditions are stongly dependent on the
mechanical system =,td its configuration at the time of impact. A method is now
proposed to verify analytically whether or not soction can occur.

Without loss of generality consider the open loop case under socking conditions. Asthe normnal n was defined from body I to body t and the tangential vector t was
considered along Avt. or, in the opposite sense of vt(), thus the solution c', Eq. 42 should
always yield positive normal and tangential impulses.

According to Crammer's role

D.; X . D, (63)

where

cc.
T

M -;DI c-M~v c<

Therefore ifD > 0. then DI >0andD2 >0orifD <. thenDI <0and D2 < 0. In the
present cases D>0 thea the necessary condstons for socoon to occur, can be wnten as

c,¢M c'vl
> 
- (I + e) c, M 'cv > .0 (64a)

(I + e)c'M'c, v1.) - c.M'Zcv' >> 0 (64b)

which can be used to define bounds on e for suction to be possible.

9.3. 3D DOUBLE PENDULUM

Ct. 'stder now that the double pendulum is also rotating around the Y axis with an
angular velocity 03 as shown in figure 8. As it is shown the vectors tI (opposite to the X
axis) and t2 (along the Z axis) define the contact plane. At the time of impact the joint

velocities are 01 = -I and 62 = -1 and 03 = I (rad/s), resulting in the approach velocity
vi(') - .2.683 tt .809 tz. 1.309n.

The algorithm described in section 8 was used and it can be shown that sliding
condstions prevail for this case, therefore Eq. 38 must be used to obtain the normal
component of the rnpulse. However. acording to the proposed contact law, the direcoon I
of the tangential impulse must be such that the energy dissipation during the impact is
maximuzed. Eq. 61 clearly shows the dependency of TL on t. A plot of the variation of
TL for the present 3D pendulum example, when t is considered to rotate an angle a
anticlockwise from the direction of vI(') is shown in figure 9. The direction of t
corresponding to a maximum energy dissipation is denoted by the angle am.it should be
observed that for this direction a value of in5 = 4.02 N.scc is predicted which is 78% of
the maximum normal imput (for a = 196.25). o and a, are two other nportam angle
values. They define a sector corresponding to directions of the tangential tmpulse that
imply energy gains, therefore are not accemable.
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* ml--m2=l.0
3l=J2-ml/12
b=l.
0l-lgdeg 61-1

02=12 deg 62-1
03= 0.deg 63=1e
g±=4 e-.7

TOP VIE z

Figure 9. 3D Double pendulum

Figure 10 illustrates the vectors: vt(-), the tangential velocity jump, Avt, the outgoing
tangential velocity, v(), and te tangential impulse, it, ccrresponding to maximums
energy dissipation. Another vector t for the direetion of the tangential impulse is also
represented which was obtained front Ref. (161 where an averaging process of the
tangential components of the approach and separation velocities have been used. It
clearly shows that the tangential impulse, in general is not collinear with v1(-) and vt(*).
The present calculations predict at the point of contact:

V *) =.675t1+.4lt2+.916n;
Ap = I.26 t - 99 t2+4.026n

A modification on the algorithm in section 8 mutt then be itroduced in step 3
where n,, must be found from Eq. 52 (38) for closed (open) loop systems, using a
direction t that rmiinuzet TL.This process is highily non linear and can be earnied out
with the use of any standard minimization algoritm
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10. Conclusions
Si

In this paper, a method was presented for the piecewise analysts of the intermittent
moton of mechanical systems. A canonical form of the impulse of momentum equations
for multibody systems can be established in terms of a rummum set of joint coordinates
and can be solved easly for the jump in the joint velocities during the impact. This
solution also finds the impulsive forces exerted on the contact surfaces of the colliding
bodies and provide a means by which necessary conditions are introduced for suction or
sliding to occur. The analytical set is completed by a system of contact laws involving
the introduction of a coefficient of restitumon traditionally used for the descipion of
two body collisions and a coefficient of friction associated with the Coulomb's dry
friction model and assuming that friction is developed in a such a way that a maximum
dissipation of energy will be observed. Since the impulse-momentums represent a first
integral of the motion, velocity jumps can be calculated in a straight forward manner
allowing an immedsate assessment of energy changes.
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IMPACT DYNAMICS OF MRULTIBODY MECHANICAL SYSTEMS AND
APPLICATION TO CRASH RESPONSES OF AIRCRAFT OCCUPANT/
STRUCTURE
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Wichita, KS 67260.0035, USA

ABSTRACT. Analytical evaluation of the performance of mulubody mechanical systems
becomes rapidly unmanageable as the complexity of the systems increase. For problems
that involve internuttent motion due to an impact, prediction of the responses is even
more difficult. In an impact, nonlinear contact forces of unknown nature are created,
which act and disappear over a short period of time. In this paper, different contact
force models are formulated, with which a continuous analysis method is developed for
a simple two-particle impact. The procedure is then generalized to impact in mulibody
systems using the concept of effective mass. A piecewise analysis method is discussed,
which is based on a canonical form of the system impulse/momentum equations. The
suitability of these methods are discussed by application of these procedures to some
examples. An optimization methodology is then discussed for the selection of proper
parameters in a given contact force model. The use of this techraque in the selection of
the most suitable materials, which are impact-resistant, is also discussed.

The methods discussed earlier are applied to the seat-occupant-restraint sys.em of
an aircraft. A description of a computer-aided analysis environment, including a
multibody model of the occupant and a nonlinear finite element model of the seat, is
provided, which can be used to re-construct variety of crash scenanos. These detailed
models are useful in studies of the potential human injuries in a crash environment,
njures to the head, the upper spinal column, and the lumbar area, and also structural

behavior of the seat. The problem of reducing head injuries to an occupant in case of
a head ontact with the surroundings (bulkhead, interior walls, or instrument panels), is
then considered. The head impact scenario is re-constructed using a nonlinear visco-
elastc type contact force model. A measure of the optimal values for the bulkhead
compliance and displacement requirements is obtained in order to keep the possibility of
a head injury as little as possible. This information could in turn be used in the selection
of suitable materials for the bulkhead, instrument panels, or interior walls of an aircraft.
The developed analysis tool also allows aircraft designers/engineers to simulate a variety
of crash events in order to obtain information on mechanisms of crash protection, designs
of seats and safety features, and biodynamic responses of the occupants as related to
possible injuries.

1. Introduction

A collinion between the two bodies is known as an impact during which forces are
created that act and disappear over a short period of time. The duration of the contact
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period governs the choice of the method used to analyze the impact. The methods for

predicting the impact risponses can primarily be classified into two groups. In one, the

impact is treated as a discontinuous event. Momentum-balance/impulse equations are
usually formulated by integrating the acceleration-based form or the canonical form of
the governing equations of motion. The solution to these equations gsves the jump in the
velocities or momenta, with which the integration of the equations of motion can be re-
started. This classical approach has been followed by many, for direct-central and
oblique impacts of two free solids not connected to other bodies (1-3]. For an impact
within a multibody system, a set of momentum balance-impulse equations was developed
by Wehage (4]. Khulief and Shabana extended these equations to flexible multibody
systems (5]. In (6], it was shown that in order to gain numerical efficiency and stability,
the equations of motion for a multbody system may be assembled in a canonical form.
In this formulation, a reduced set of momentum balance-impulse equations was developed
based o die time integration of a canonical form of the equations of motion. In order
to perform this so-called "piecewise analysis,* the coefficient of restitution between the
two colliding bodies must be known. Although this method is relatively efficient, the
unknown duration of contact limits its applicability. If the duration of contact is large
enough that significant changes occur in the configuration of the mulLbody system, then
the assumption of instantanesty of impact is no longer valid.

In the second group of methods used for impact analysis of mulibody systems, the
local deformations and the contact forces are treated as continuous. The impact analysis
of the system is hence performed simply by including the contact forces in the system
equations of motion during the contact period. The application of this so-called
.continuous analysis,* requires knowledge of the variation of contact force during the
contact period. Different models have been postulated to re.present this variation. In the
most simple one, the contact force is modeled by a parallel linear spring-damper element
(7]. This modes, )mown as the Kelvin-Voigt viscoelastic model, has been used for the
impact between two bodies within a multibody system (8]. Hovever, this linear model
may not be very accurate since it does not represent the overall nonlinear nature of an
impact. Furthermore, the half-sine shape solution that it provides for the local
deformation of the two bodies in the direction of impact suggests that the two bodies
exert tension on each other right before the reboundmg stage. A more suitable model
of the contact force is the nonlinear Herman force-displacement law [9]. Although

t Hertzian theory is based on elasticity, some studies have been performed to extend the
theory to inch e energy dissipation (7, 10-12].

In this paper, continuous contact force models are presented, for which unknown
parameters are analytically evaluated. In one mode, internal datnping of the impacting
bcdies is used to represent the energy dissipation at low impact velocities. A hysteresi
damping function of this nature assumes that the loss of energy in impact is all due to the
material damping of the colliding solids, which dissipates energy in the form of heat.
At fairly moderate or higher velocities of colliding solids, especially metallic solids,
permanent indentations are left behind on the colliding surfaces. In the second contact
force model, which coven these cases, local plasticity of the surfaces in contact becomes
the dominant source of energy dissipation in impact. For both models, the unknown
parameters are evaluated by energy and momentum considerations in terms of the
velocities of the solids before impact and the coefficient of restitution. The two-parucle
model is then generalized to impact analysis between two bodies of a rnultibody
mechanical system. The concept of effective masses is introduced to take into account

* - the effect of joint forces or impulses. The suitability of the different methods is
discussed by applications of the procedures to some examples, including a vehicle
rollover. An optmzauon methodology is then discussed for the selection of proper
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parameters in a given contact force model. The objective would be to minimize the
maximum acceleration of the system effective mass(es), such that the maximum
deformations fall below a certain range. The design parameters would be, for example,
the Inear or nonlinear stiffness coefficients, damping coefficients, amount of permanent
indentation, etc. The use of this technique in the selection of the most suitable materials,
which are impact-restnt, are discussed.

The methods discussed earlier are applied to the seat-occupant-restrant system of
an aircraft. To improve passenger safety, the design and the arrangement of the seats,
types and characteristics of the restaints, and the dynamic performance of the occupants
in various crash environments must be known. A description of a computer-aided
analysts environment is provided, which can be used to re-construct variety of crash
scenarios. The analysis capability riehcs on the development of a multibody dynamic
model for the occupant. The occupant model is based on the model from the code SOM-LA/TA (Seat Occupant A (odel-Light Aircraft/Transport Aircraft) [13-14]. Body
segments are connected I:1 joints which impose resistance in terms of a nonlinear
displacement limiting moment, viscous damping, and muscle tone. The model of the
upper spinal column has been refined to include the seven vertebrae and a hydrodynamic
model of the skull/brain. A quasi-stauc analysis capability of the rigid mulsbody
dynamics of the gross motion of the occupant, together with a finite element model of
the lumbar spine, have also been developed. These detailed descriptions make the model
useful in studies of the potential human injuries in a crash environment, injuries to the
head, the upper spinal column, and the lumbar area. A nonlinear finite-element model
of the seat structure is also used which includes large plastic deformations, buckling of
bending members, material nonlinearity, etc.

One aspect of these studies is to reduce head injuries to an occupant in case of a
head contact with the surroundings (bulkhead, interior walls, or instrument panels). In
this paper, the head impact scenario was re-constructed using a nonlinear visco-elastc
type contact force model of exponential form. The stiffness coefficients in the model
were obtained from experimental correlations, and the damping coefficient was obtained
using Rayleigh formulation. Correlated studies of the analytical simulation with impact
sled test results, performed at National Institute for Aviation Research (NIAR) and Civil
AeroMedical Institute (CAMI), were accomplished. A parametric study of the
coefficients in the contact force model was then performed in order to obtain the
correlation between the coefficient and the Head Injury Criteria. A measure of the
optimal values for the bulkhead compliance and displacement requirements was thus
obtained in order to keep the possibility of a head injury as htile as possible.

2. Contact Force Models

When two solid, are in contact, deformation takes place in the local contact zone
resulting in a contact force. This suggests that the contact force is directly related to the
amount of local deformation or indentation of the two solids. The best-known force
model for the contact between two spheres of isotropic material was developed by Hertz
based on the theory of elasucity [9]. With radi , and R, of the two spheres "i" and j
and masses m, and i,, the contact force f follows the relation

f -K 6, (1)
where 6 is amount of the relative penetration or indentation between the surfaces of the
two spheres and n = 1.5. The generalized parameter K depends on the material
propertes and the radii of the spheres:
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K- ~ RR(2)
K 4

-( h) I . -R

where the material parameters h, and h, are
I - P? (3)

3E)

Variables v, and El are, respectively, the Poisson's rauo and the Young's modulus
associated with each sphere.

Consider now a situation for which the contact between the two spheres is caused
by a collision. The two spheres have velocities V,0 and V1  nght before impact. It is
intended to determine the vanauons of the interaction force between the two spheres
during the short period of contact. The normal direcion n to the contact surfaces and
a pair of forces f and -f are shown in Figure 1. In general, the resulting contact may
be considered to occur in two phases: the compression phase and the restitution phase
During the compress:on phase, the two spheres deform in the normal direction to the
impact surface, and the relative velocity of the two spheres is reduced to zero. The end
of the compression phase is referred to as the instant of maximum compression, or
maximum approach. The resttution phase strs at this point and lasts until the two
spheres separate.

q- IM"

Figure 1. A direct-cent,. impact f two spheres.

Generally, the two spheres will not rebound with the same initial velocities, because
part of the initial lanetic energy is dissipated in the form of permanent deformauon, heat,
etc. It is apparent that the contact force model of equauon (1) cannot be used during
both phases of contact, since this would suggest that no energy is dissipated in the
process of impact. One popular treatment is based on the idea that dissipation of enery
occurs in the form of internal damping of colliding solids. This assumption is valid or
low impact velocities; i.e., those impact situations for which impact velocities are
negligible compared to the propagation speed of deformation waves across the solids.
The contact force model will then be in terms of a damping coefficient D,

-fs K6- + D 4, (4)

where 5 is the relative (or indentation) velocity of the solids. A hysteresis form for the
damping coefficient was proposed by Hunt and Grossley (10) as

F I D - 1,/i (5)

where the parameters u is called the "hysteresis damping factor." The contact force
model of equation (4) may be used for the enure period of contact. With this model, the
energy loss is assumed to be due to the material damping of the bodies, which would
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dissioare energy in the form of heat. For known paKaetes K and D (or g). the shape
of the hysteresis foO corresponding to this force model and the solution corresponding
to the varianons of the indentation with time are shown in Figure 2 (15]. In this figure.
t. . and tf denote the time of initial contact. the ume of maximum indentation, and
the uime of separation of the local contact surfaces, respectively. Varables 6. and f.
refer to the values of indentation and the contact force at time t. In the contact force
model of equation (4), the damping coefficient D or the hysteresis damping factor g must
be determined. An estimate of the parameter g based on the classical impulse-
momentum equation and the work-energy principle can be determined.

(a) (b)
Figure 2. Hertz contact force model with hysteresis damping: (a) contact force versus

indentation and (b) indentation versus time.

From consideration of the kinetic energies before and after impact, the energy loss
AT may be expressed in terns of the coefficient of restitution e and the relative approach
velocity -" - - V

'  as

AT - mini ' (I - e
5
) , (6)

2
where mm"M(-O . m 1 (7)

is the system equivalent mass. The energy loss may also be expressed by integration of
the contact force around the hysteresis loop as (161

where f refers to the integration around a hysteresis loop for a contact force of the form
shown in Figure 2(a). The hysteresis damping factor A may be evaluated by comparing
the right sides of equations (6) and (8),

3K(I ei)
A, (9)

which shows a direct relationship between the coefficient of restitution and an equivalent
damping factor. L he contact force in conjunction with the damping representation may
be wntte. n an alternative form as

fKS' 3( -e ] 1 (10)

which shows a direct relationship between the coefficent of restitution and the contact
force.
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The clear advantage of the Hertz contact force n'odel, f = K6, with its damping
representaton i equ~ion (10) over the Kelvin-Voigt viscoelastic model is its
nonlinearty. The overal pattern of impact is far from linear, while the Kelvin-Voigt
model and its damping representation are linear models. The solution for indentation
corresponding to the linear models is a half-damped harmonic. This indicates that the
bodies in impact must exert tension on each other right before separation. On the other
hand, the Hertzan contact force model predicts no tension on the bodies before
2(b).

,t higher impact velocites, the dissipation of energy is mostly in the form of local
plasticity. This means that some permanent indenmtaton is left behind on the surfaces of
the two spheres after separation. and this indication accounts for the energy loss in
impact. This is not an unreasonable assumption for impac.roblems in wuch two
metallic bodies with imitial relative ve4xiW larger than l" VElp collide (17], ,,here p
is the mass density and the quanaty VFE/p is the larger of two propagation speeds of the
elastic deformaton waves in the colliding solids. With this condition, the contact force
loads according to equation (I) during the compression period, and in loads according
to

f - f. . * during restitution, (I)

where vriable S is the permanent indentation of the two spheres after sepaation. The
shape of the hyseeres loop corresponding to this contact force model and the solution
corresponding to the variaton of the indentation with time are shown in Figure 3.

(a) (b)
Figure 3. Hertz contact force model with permanent indentation: (a) contact force

versus time and (b) indentation versus time.

The proposed contact force model can be used for the impact between two spheres,
if the parameters in the model are known. The generalized parameter K may be
evaluated from the radu and the material properties of the two spheres using equation
(2). The remaining parameters are 5, f_, 6, which can be determined by integrating
the relative indentation equahions of mouon twice, substitution in the contact force
expression, and integrating the contact force around the hysteresis loop and equating it
to the kinetic energy loss, as [151

6. - mN-- (12)

f. - K 6: (13)
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I)

i (5 lm - e) G (14)

Hence maximum indentation or the two spheres and maximum contact force depend on
the material properties, masses, radii, and velocities of the two spheres right before
impact. The permanent indentation is evaluated from the initial approach velocities or
the spheres and a known coefficient of restitution between the spheres.A continuous analyss -nay now be performed by numerically integratig the
equtinons of motion of the two spheres forward in Ume in conjuncton with the dL-".-Ito -'
contact force model. A soluton is thus obtaid in the form of posions. velocities, and
acceleratons of the spheres at any instant of time during the contt period. As a by-
product of the preceding parameter identficaton process, one can approximate the
duraton of the contact period between the two spheres as (18]

At 2.94(15)

To ilustrate the parameter estmaton process, a numencal example is considered
here. For a diroct-cennal impact of two identical aluminum spheres, a coefficient of
resttuton of 0.7 and a duration of contact of 135 As were recorded from experiment (7].
Both spheres had equal ad opposte impact velocies of 0.15 m/s, and each had a radiusof 0.02 M.

Based on the presented theory, it i intended to construct the contact force model
between the two spheres. The ntil indentaton velocity between the two spheres is' "=0.3 m/s. Theespeed of deformation waves is 2.6 (101 ) m/s, which provides a

li forng value of 0.026 m/s for the impact to be considered elastic. Hence, the Herti
S oinct force model with permanent indentation is a valid one. The generaized
prmeter K is caiculated from eution (2), with u = 0.33, to be equal to 5.50(10')

lm.e equivalent mass of the two sphers is obtained from equation (7) as m*)
S0.046 kg. From equations (12), (13), and (14), the unrmown parameters in theontct force model are evaluated as

it . = 1.55(10
"

) m; f = 336 N; 6, = 7.92(10') m.With all the parameters determined, the contact force model of the two spheres is

constructed as shown us Figure 4.

I~~ ~ ...............

Figure 4. A Herzin contact force model with permanent indentaton for the impact of
two idenucal aluminum spheres with impact -'locities of 0. 15 m/s each.

Note that the permanent indentation is slightly larger than half of the maximum
relative indentation for this impact situation, which is a significant amount. This
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suggests that the local plasticity of the contact surfaces during impact cannot be
neglected. and it again iusUries the valdity of he Herman contact force mocel with
permanent indentation. A continuous analyi may be performed on the two spheres with
the constructed contact force model. The relative indentation equation of motion.
mw' 5 - -f. with its corresponding initial conditions. and the developed contact force

model of Figure 4 are integrated forward is time until the separation time. This results
in a relative departing velocity, "', of 0.21 m/s and a duration of contact of 130 uis,
which is very close to the experimental value of 135 As.

The solution for variations of indentation, indentation velocity, and indentation
acceleration vernus time is shown in Figure 5. If a piecewise analysis with the
coefficient of restiution of 0.7 is gerformed, the relative departing velocity of the two
spheres is obtained as 6' - -e.A - -0.21 m/s. Comparison with 61*) from Figure
(b) shows that the results from a continuous analysis and a piecewise analysis match

closely. The energy dissipated in impact can also be evaluated as AT = 1.06(10
" ) 1.

Also, the approximate expression of equation (15) for the duration of contact results in
a value of At - t(  - to a 152 As. The apparent difference between this approximate
value and of the experimental value of 135 As. is due to the fact that the restitution
period is relatively shorter than the compression period.

---------- - --------

........

S---~1--- - --------- -------------.- I
.

(a) b I (e )

Ffrom a contnuous analysis of the two aluminum-spheres impact.
Time variations of: (a) relative indentation, (b) relative indentation velocity,
and (c) relative indentation acceleration.
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3. Generalization to Multibody Impact

We now generalize the preceding discussion to an impact situation within a multibodv
system. Let the two colliding bodies be i and 'j" irthe system of Figure 6 The
points of contact on the two bodies are P, and P, and n is a unit vector in the normal
direction to the contact surfacr, of the two bodies. No matter which type of coordinates
are used to assemble the eqations of motion for the multibody system, the coordinates
and the velocities of the bodses can be calculated, at any instant of time. from the
solution of the equations of motion. For a known system configuration at the initial lime
of contact, the location of the contact points r',l and r,"') and the components of the
algebraic unst vector n, with respect to a non-moving xyz coordinate system. may be
calculated. From the known ngid body velocities, velocities of the contact points i the
xyz coordinate system, P,' and r'', may also be calculated at that time. Hence, the
indentation and the indentation velocity at the inal time of contact are

30 - 0 (16)

,i T' " nr r,X- -r .,P-)] , (17)
in which the symbol T performs the transpose operation and velocities of the contact
points are projected in the normal direction to the contact surface. The expression in
equation (2) for the parameter K can be used for the contact between any two bodies if
the local suffaces of contact are both spherically shaped. Similar expressions have been
obtained by Hertz [9] and others [7, 19] for other shapes of the local contact surfaces

* such as sphere on plane, parallel cylinders, and plane on plane. Once the generalized
parameter .is calculated, with a given coefficient of restitution e and the initial approach
velocity 6, all other parameters in the contact force model can be determined.

r
P  

t

I s' P,

Figure 6. Impact within a multibody system

With known variations of the contact force during the contact period, a continuous
analysis of the system can be performed simply by adding these forces to the mulsibody
system equations of motion. This analysis method provides accurate results, since all of
the equations of motion are integrated over the period of contact. It thus accounts for
the changes in the configuration and the velocities of the system during that period. To
avoid computational inaccuracies and inefficiencies associated with the integration of the
system equations of mouon over the period of contact, scaling of the time anxis is
someumes performed.

In order to gain some computauonal efficiency, we may use an alternative method
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which reouires some approximation, that the duranon of contact period is small enough
such that the configuration of the system, and therefore, the normal direcuon or impact
remains the name before and after impact. The purpose of this analysis is to represent t
the two bodies "i" and "j" is Figure 6 by two equivalent particles of Figure 1. To
account for the inertia properues or the colliding bodies when the equivalent particle
model is used, one must evaluate an effective mass m 

=
" for each body, I = i, j Since

the body "l" may be kinematically constrained to their bodies in the system. the reaction
forces at the kinematic joints affect the motion of the body during the contact period

The compensatson for the effects of joint forces in the evaluation of effective mass
is based upon whether an energy or a Newtonian approach is followed. Using an energy
approach, the effective mass of body "I" is evaluated as

mnI ,i mmI ;~ 1-, (18),

where m, and T, are the mass and kineuc energy of body "I", and Tr denotes the total
kineuc energy of all the bodies that are connected directly or indirectly to body "I"
including body "1" [8]. This collection of bodies is referred to as a sub-system associated
with body "I1. Note that the kinetic energies in equation (18) are only due to the
components of velocity of the bodies in the direction of impact. As a direct consequence
of Newton's second law of motion, the effective mass of a body must be a measure of
the resistance of the body toward its velocity change. Hence in a Newtonian approach.
the effective mass of each colhdin# body "I" is evaluated in such a way that the inerial
forces acting on the body, in the direction of impact, would be equivalent to the inertial
forces acting on the sub-system containing body "I" in the direction of impact; i.e.,

E n' in, tmush n as k (19)

where mn. and tx ame the mass and the translational acceleration of body k, and the
summation k is over all of the bodies in the sub-system. Note that the effective masses
obtained by the Newtonian approach may or may not be the same as the etfective masses
obtained from the energy apyroach.

Once the calculation ol effective masses of the two colliding bodies is performed
right before impact (at the time of initial contact), the direct-central impact model of the
two spheres is reconstructed with effective masses mill and mill and initial velocities
n r ' and n it 

.
- The relative indentation equation of motion of the two spheres

durig the period of contact then becomes

S.-f (20)

where - ( i
P - iJI ), and

MW . M, (21)

Equation (20) is a second-order ordinary differenual equation that may be solved
numerically during the period of contact knowing the vanations of the contact force A
proper set of initial conditions at the time of initial contact 0 is provided by equations
(16) and (17). The numerical integration of equation (20) with the developed contact
force model is cared out until the surfaces of the two spheres modeling the two bodies
Y and "j" separate from each other

For tllustration of impact analysts of a multibody system, a study of a vehicle
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rollover was performed. Simuiations were performed to duhlicate experimental rollover
test of a venicle at 30 mh on a FMVSS 298 rollover cart impacting a water-filed
decelerator system. thereby throwing the vehicle otf the cart. The initial roll angie was
23 degrees The vehicle. at the time of departure, had a velocity of approximatelv 25
mph in the translational direction and 1.5 rad/s in the roll direction as shown in Figure
7. A number of different analyses with rigid and flexible bodies have been pertormed
on this vehicle (20, 211. Two additional simulations related to the topic of this paper
were also performed and the results were compared to those from the experiment.

ao"~~~ 3g ..........

Figure 7. Initial configuration of the vehicle for the rollover test.

In the first simulation, a piecewise analysis was performed for any contact between
the vehicle rollbar cage and the ground. A set ofcanonical impulse-momentum equations
was used at the time of inpact [6]. At the time of inpact te

' , integration of the system
equations of motion was interpreted and the jump in the system momenta were
calculated. With new momenta, integration of the system equations of motion were
restarted. This procedure can be summarized as follows. First the linear system,

DMN D [ e N (22)

was solved for 4s and T, and then the momenta after impact was updated as:

p() Nr (23)

In these equations, (-) and (+) refer again to the quantittes before and after impact
respectively, N ii a composite normal vector, e the coefficient of restitution, q the
velocity vector, T- the impulse due to the contact force, a the Lagrange multipliers
associated with velocity constraints, M the system mass matrix, D = (D', NT 

IT
, D the

constraints Jacobian matrix, and p the vector of system momenta.
A continuous analysis was then performed using the Hertzian contact force model

with permanent indentation. To develop the contact law, the curvatures of the rollbar
at the area of contact was used, as shown in Figure 8 (19]. The parameters in the
contact force model were determined, and the resulting model is shown in Figure 9. The

f solutions for relative indentation, velocity, and acceleration of the rollbacs/ground may
be determined simular to the procedure for the two alummnum spheres impact. The
configuration of the vehicle during the rollover is shown in Figure 10. Summary of the
results from the two analyses and the experiment is shown in Table I. As observed,
although piecewise analysis is computationally more efficient, the corresponding results
are not very accurate. This is due to the fact that the duration of the contact is large
enough (approximately 1/4 second) that significant changes occur in the configuration of
the system. In comparison however, the continuous analysis with the developed contact
model resulted in much more closer results to the experimental values.
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Figure 8. Curvature used to develop the contact force model for rollbar/ground contact.
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force model so as to minimize the maximum value of the contact force. Consider the
to-parcle model of any impact. shown in Figure 1, for which a single differenual
equation of motion in the direction of relative identation of the contact surfaces.
equation (:0) has oeen wrinen. The optimization methodology was formulated as:

Objective Function Minimize I , (24)
Subject To : r a

where 6_,. represents the maximum acceleration of the system equivalent mass under the
action of the contact force, and A is a limit on the amount of relative indentation. A
solution to this problem was obtained using the method of modified feasible direction for
constraned muumszation. A numerical integrator was used at every design iteration to
obtain the system dynanic response for a given set of design variables.

As an example, the preceding steps were applied to a vibro-impact system of
equivalent mass or 6 kg, initial relative impact velocity of 0.5 m/s, and a limit of 5 5 cm
on the amount of relative indentation. The nonlinear Herwan viscoelastic model of
equation (4) was used to represent the contact force. The optimization problem of
equation (24) was solved for the system, for which the desti n variables were the
parameters X and g in the contact force model. The optimized parameters wereS determined as:
de a K = 685.7 N/miJ; ,A = 9,428.6 N.s/m"
under which the resulting peak value of maximum acceleration, I ,, I was 4.2 m/st
Diagrams for the contact force versus indentation, when optimal K and/u are used, are
shown in Figure II(a). A sample diagram for non-optimal parameters is also shown in
Figure 11(b). It can be observed that the peak contact force is greatly reduced for the
optimal case. Also, the system with optimal parameters temds to dissipate more energy
than the non-optimal one during the period of the contact.

To study the effect of initial impact velocity, the optimization problem was then
solved with a few different initial velocities. Table 2 summarizes some of the results,
from which it can be observed that at higher velocities both stiffness and damping
characteristics must increase in order to reduce the maximum acceleration and to keep
the amount of indentation below a certain Unut. The resulting peak acceleration also
increases for increasing initial impact velortty. As observed, the optmization procedure
can provide useful information on the compliance requtreient of crashworthy materials.

(a) (b)
Figure II Force versus displacement diagram for the system with (a) optimal

parameters, (b) non-optimal parameters.

~539" L______

U



Table 2. Osumai Coefficients for the nonlinear Hertzian Viscoelasiuc model

CaseNo I V,(m/s KN/m) T. (N.S/m:n I W ,,m/s:

i 0.5 I 6857 I 94286 I 4.22
2 10 I 2285.7 20000 I 1689

3 1.5 9142.9 24285.7 38.41

5. Applications to Crash Responses of Aircraft Occupant/Structure

As an application of the theory discussed earlier, the crash responses of -,craft
occupant/structure will be presented. To improve aircraft crash safety, conditions -nuical
to occupants survival during a crash must be known. In view of the importance o this
problem, studies of post.crash dynanic behavior of victims are necessary in order to
reduce severe injuries. In this study, crash dynamics program SOM-LAITA (Seat
Occupant Model - Lsght Aircraft / Transport Aircraft) was used [13,14]. Modifications
were performed to the program for reconstuction of an occupant's head impact with the
intenor walls or bulkhead. A viscoelasoc-type contact force model of exponenual form
was used to represest the compliance characteristics of the bulkhead. Correlated studies
of analytical simulations with impact sled test results were accomplished. A parametrc
study of the coefficients in the contact force model was then performed it order to obtain
the orrelations between the coefficients and the Head Injury Criteria. A measure of
optmal values for the bulkhead compliance and displacement requirements was thus
achieved in order to keep the possibility of a head injury as little as possible. This
information could in turn be used in the selection of suitable materials for the bulkhead.instrumuent panel, or nterior walls of an aircraf. Before introducing the contact force

model representmn the occupant head impacting the interior walls, descriptions of impact
sled test facilites, multbody dynamics and finite element models of the
ccupant/seat/restraint systemu, duplication of expriments, and measure of head injury
are provided.

I 5.1 IMPACT SLED TEST FAC rII

In order to evaluate the dynamic performances of the occupants and seats, the impact sled
facilites at National Institute for Aviation Resea.-ch (NIAR) are used. The horizontal
impact test sled moves on a 23.8 meter track and has a amuum speed of 24.5 m/s.
It runs on plastic shoes and is pneumatically proptlled. The sled can attain its maximum
aceleration within fifty feet of its travel. Steel straps are placed at the end of the track
to bring the motion of the sled to an end as shown t Figure 12.

Figure 12. Impact Test Sled at NIAR.
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Anthropomorphic dummies are used as occupants in the sled test experiments.
There are standard 50 percentile (past 572) dummies, which represent an average male
of weight 79.4 kg and height 1.75 meters. A 951 percentile dummy is also available,
which represents an average male who weighs 90.7 kg and haq a hesght of 1.88 meters.
These dummies have openings in their head, vertebral column (lumbar) and femur. By
fixig accelerometers and transducers inside these openings, the acceleration responses
of head, lumbar, and femur can be determined during an impact test.

To conduct an impact sled test, the dummy is first restrained to a seat with a
suitable restraint system and the seat is mounted on the sled. The sled is allowed to
accelerate to the required value and then it coasts. The impact then occurs in the form
of a deceleration pulse produced by the sled probe collding with a number of steel
straps. In addidon so the data from the accelerometers, the displacement, velocity and
acceleration of the dummy are recorded and evaluated using a high speed video system
and optical target tracking techniques. Visible marks (targets) are attached on different
rpart of te dummy, seat and sled. During the motion of the sled, the targets are tracked
by a video carnera. An Ektapro 1000 motion analyzer is used to record the motion of
the targets. The analyzer is capable of recording 1000 frames per second. From the
resulting photographs, the puth of motion of the targets can be determined. A software
package called Motion Pro is utilized to digitize the motion recorded from the high speed
video cameras by collecting coordinates of the points, ceirods, angles and line
segments. To overcome the difficulties of manual tget tracking and also reduction of
noise in the collected date, a simple automated taret traclang procedure has also been
developed (22].

5.2 MULTIBODY DYNAMICS MODEL OF THE OCCUPANT

Program SOM-LA/TA incorporates a dynamic model of human body and a finite element
model of the seat structure. The program is intended to provide the designer with a tool
which can analyze the structurat elements of the seat as well as the dynamic response of
an occupant during a crash. Both two- and three-dimeusional occupant models are
available. The user can select the type of occupant from the available options, which
are: standard 50 percenole male human, standard 501 percentile dummy (part 572),
nonstandard human, and nonstandard dummy. The two-dimensional model, which was
investigated Li this study, is represented by II rigid bodies/segments, and constitutes II
degrees-of-freedom (Figure 13). The sements represent the head, upper and lower
torso, pelvis, upper arms, forearms, thighs, and lower legs. The model is as
configured to include beam elements in both the torso and the neck. This provides a
measure of the vertical loads experienced by the occupant, in arcraft accidents.

Figure 13. Two-dimensional model of the occupant [13].
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The rotor cup, elbow, pelvic, knee, and head/neck joints are hinge-type

c ons Ro on at the jois are resisted by torsional spnng-dampers whose
characterstc depend on the use" selection of human or dummy occupant. External
loads are applied to the body segments by the seat cushion, the floor, and by the belt
restraints. Each of the forces acts normal to the contact surface. Friction forces are also
applied by the seat bottom cushion and the floor, and in a direcuon opposite to the
tagental component of relative velocity between the occupant segment and cushion or
floor surface. Different types of resrint systems can also be modeled. They are lap
belt, only attached to either the airframe or the seat, diagonal shoulder belt over the right
or left shoulder attached to either the airframe or the seat, double shoulder belt, and
double shoulder belt and lap belt tiedown strap. These exerted forces on the occupant
are evaluated based on the geometrical (ellipsoidal, spherical, and cylindrical) shapes of
the body segments. From these, the impact between the occupant and the aircraft
interior can be predicted. A quasi-static equilibrium for finite element method in the
incremental form is used to determine the seat structure responses. The seat is modeled
with triangular plate elements, beam elements and spgrins. Large plastic deformations,
as well as localized buckling of bending members can be predicted. Material
nonlinearity is treated using elasto-plastic behavior and internal releases. At any time
during the simulation, incremental displacements of the seat structure is obtained from
the external forces and on updated tangential stiffness matrix. Total displacements of the
seat are obtained by summation of all the incremental displacements. For dynamic
formulation, a set of Lagrange's equations of motion in terms of independent or
generalized coordinates is formulated and numerically generated. The differential
equations of motion are converted to a set of first-order ordinary differential -luatsons.
The fourth order Runge-Kutta, as a starter and the predictor-corrector scheme of Adams-
Bashforth/Adams-Moulton with adjustable step size is used as the numerical integrator.

In order to investigate the compliance and displacement characteristics of the
aircraft bulkheads, an envelope was included for both the occupant and the seat. The
paizmeters of the contact force model, as will be discussed later in this paper, were
adjusted to obtain optimum co liance and displacement requirements.

Since the forces produced by the neck of the occupant model are also not clearly
represented, further modifications are being carried out i order to replace the btam
element of the neck with an efficient discreWzed neck model. Both two dimensional and
three
dimensional models will be present. The two dimensional model has 9 degrees of

frecdom, and the three dimensional model has 36 degrees of freedom. The model
includes the skull and the seven vertebral elements (cervical). The model shown in
Figure 14, is based on the detailed cervicle model of Merrill et al. (23]. Another
modification is construction of a brain model, based on the principles of hydrodynamics
(squeeze effects). The basic model, representing the skulJ-brain iteraction of 1-igure
14, studies the effects of two spherical bodies with fluid between them. For such a
model, the pressure p and corresponding reaction force f developed inside are calculated
using

3p,V [ ) -i] (25)
! \c/RY 1 Icos()'

6itVR -I in(l e) _ I (26)

(*~ I -2
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where A is the viscosity of the fluid: V the veiocity of the inner spherical body; R the
radius of the inner spherical body; e the eccentcity ratio; c the radial clearance, and 0
the angular coordinate measured ftom the maximum film thickness.

cs

Figure 14. Modified skuUl-ban-neck model

An imporant measure of injury to an occupant i an arcraft accident is the amount
of load transfed o the occupant lumbar spi 24]. The two dimensional occupant
model utilizes a typical Iol-deflecuon formula of an intact lumbar spine vertebral
column to predict the axial load and moments acting on the lumbar. This results in an
incorrect representaion of the dynamic responses produced by the spinal column during
an impact. In order to predict the intenal forces and moments in the spine, a fint

lement model has ben pn rated into the ocpant model. To u.e rcome the

problems of insabity and inefficiency, a quasi.statc methodology has been developed,
which combines the finite element methods with rigid multibody dynamics principles.
A descripuon of this methodology is provided next.

In finite element analysis, the loads will generally be thought of as being applied,
while the displacements are thought of as resulting. However, in analysis of muldbody
responses, it often happm.s that we have mixed boundary conditions. An example of a
mulubody system consisting of three bodies, two rigid bodies connected by a flexible
body, is shown us Figure 15. Here, body "i" represents the pelvis, body 'j" the thorax,
and body "k" the lumbar spine.

NdE 2

2 ..NOW I

Figure 15. Flexible body connecting two rigid bodies.

While performing a dynamic analysis, the configuration of the rigid bodies and
hence the displacements of nodes I and 2 of the flexible body are known. The problem
is to find the deformed shape of the entire structure and also the forces and moments
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acting on the r g eseby the deformable body. The quasl-staue approach is
rmulated by rearranging external forces, displacements, and the structural stffness

matrix. To solve the structural equilibrium equations for the unknown forces and
displacements. let us partition the known (k) and unknown (u) variables as

]1 [_ strucKral (27)
where matrices K., e, Y, and K are sub-mamtices of rearranged structural saffness
matrix K, F, is a vector of known forces acting on the spine. F. a vector of unknown
forces actng at the ends of lumbar spine, 6q. a vector of unknown displacements of
lumbar spine, and &h known displacements of nodes I and 2 calculated from the rigidbody dynamics. The unknown displacements and forces can be determined as

5q. - K."( F -KA 6q) (28)
F. -Kulq. + q,. (29)

The forces F, with some additional damping are included in the rigid body dynamics
equations of motion. Using this methodology, a finite element model of the lumbar spine
was incorporated Li the occupant model, and the loads acting on the spine were
calcued. Preliminary results show that the new spinal model can work successfully
as compared to experimental data. Further investigattons are being conducted in order
to construct a layered model wish alterna e discs and vertebrae.

5.3 DUPLICATION OF EXPERMT S

Some experimental studies, including deceleration sled tests with forward-fa=ng and
Ptch configurations were performed at Civil AeroMdical Institute (CAMI) [13,14] and
Naional Institute for Aviation Researh (NIAR) to validate the SOM-LA/TA model. A
sample of the results from the CAM! tests and those of the simulations is shown in
Figure 16. The figure shows the time history of pelvis resultant acceleration of a 50*
elentile male dummy (TIMPID H) seated over a general aviation seat in a forward-
facing test. The input deceleration pulse had a tapezoidal shape with 12 g amplitude and
I 0ms duration. The sled velocity right before impact was approximately 14 m/s. As
shown, the results from the computer simulation match the experimental results well.

Xi~ I

Figure 16. Dummy pelvis resultant acceleration versus time.
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Some tests have also been performed at the Impact Dynamic Laboratory of NIAR and
have been duplicated using the developed analysis capabilities. As an example, Figure
17 shows the resultant head acceleration of a HYBRID II dummy versus time. The
deceleration pulse corresponds to Federal Aviation Regulations Part 23_Test I for a
passenger, which is a l5g triangular pulse with 120ms duration. The dummy was
restrained using a lap belt to a rigid seat at 60 degree pitch configuration. As observed,
the results from both analysis experiment match closely.

s m UNO 1.2 Use s .0W*
? ime(see)

Figure 17. Dummy head resultant acceleration versus time.

5.4 HEAD IWM'Y CRITERIA

It is well rzcgnized that a head impact produces both translational and rotational motion
as well as deformation of the alull. Resultant brain injury may occur from both absolute
motion of the brain and its relative displacement with respect to the skull. At present,
there am several physical parameters used in the evaluation of head injury, including
translational and/or rotational acceleration levels of head impact, impact force, velocity
and lanetic energy, impulse and impact duratson, etc. These measures have been widely
used for animal, human cadaver, and dummy experimental dam to determie tolerable
and survival thresholds for head impact in translation or rotation. Other parameters such
as skull displacement and stresses, brain pressures and strains, as well as neck
stretch/strain are usually related to analytical and experimental head model studies.

Head Injury Critem (MC) is generally accepted as an indicator of the likelihood
of severe head injury and is determined from [251

HIC (45 -t1 ) r a(t)dt 1(0
where t, and t, are the initial and final integration times, respectively, and a(t) is the

resultant head acceleration (g) verses time (s) curve for the head strike. The HIC is a
method for defining an acceptable limit; i.e., the maxmum value of the HIC should not
exceed 1000. It is part of the Federal Motor Vehicle Safety Standards (FMVSS) and
Federal Aviation Regulations (24]. Program SOM-LA/TA computes the HIC by a 2

movsng-window integration of the data and a specific choice of data sampling.
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5.5 CONTACT FORCE MODEL

To assess our capabilities in predicting HIC dunng a head impact with the bulkheads of
the aircraft, several analytical simulanons were performed and the results were
compared with those of a dynamc test carried out at CAMI. The protocol in the
experiment was developed to measure the head path and velocity from an
anthropomorphic test dummy (ATD) restrained in a passeger seat. A mockup of a
vertical wall in front of the seat was included in the nxtures. The distance between the
seat end and the bulkhead was 0.9 nmeters. The test setup is shown in Figure 18. The
input pulse was of a triangular shape with a maximum value of 16.9 g and a span of 160
ins. The velocity of the sled at the time of impact was 14 m/s. A nid seat was selected
in order to eliminate the effects of the seat response on the occupant performance. The
rigid seat consisted of two planes that represent the seat pan and the seat back. Cushions
were included on the top of the seat pan and seat back surfaces. The seat pan remained
fixed in the aircraft floor and the seat back was permitted to rotate forward about a
transverse hinge axis at the base of the back if pushed from behind. A standard 50
percentile dummy (FAA required) was then chosen as the occupant.

Series of analytical studies were then performed to natch the results from the
CAM! test. Figure 19 shows the head strike impact from simulasion at different frames.
In order to assess the compliance characteristics and displacement requirement of the
aircraft bulkheads that minimize injuries as a result of a head contact, an envelope for
the occupant and seat was generated, and a more 2ccurate contact foice model was also
developed.

161h f-
KAD STRKtE VAPACT TEST SET UP o~__

-Am

Figure 18. Test set-up of a vertical Figure 19. Head strike impact from
wall in front of the seat simulation at different framer.

To match the experimental results, a nonlinear, viscoelasuc-type contact fore
model was used such that the contact force f was calculated from the deformation
(indentation) 5 and deformation rate 5 according to

f - A(eu
- 
1) + C6 (31)

for which A and B are the stiffness coefficients, and C is a damping coefficient. Other
models including linear viscoelastic, Hertzan with damping, and Hernian with
pcrsnanent indentaton were also considered. However, the contact force model of
equation (31) correlated best with the experimental statc tests done on different padding
materials For different materials, based on the static tests, coefficients A and B are
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evaluated from expenmental correlations. For the damping force, the damping ratio is
taken to be constant for all the deformation modes of interest. This reduces the Raleigh
formulation of the damping coefficient to

C - 2ka (32)

where k is the gradient of the contact force-deflection curve; i.e., k = ABeU. Variable
a is a representatve constant for the system, and is evaluated as

C _ C, _ C, (33)

where C, and k, are respectively the damping and gradient of suffness coefficients for
zero deflection condition.

The contact force model was then used to determine the occupant response as a
result of a head contact with the wall. The coefficients were vaned in order to find out
how the changes would affect the HIC and maximum deformation of the front panel.
For values of the coefficients A - 3203 N, B - 27.95 I/m, Cc - 175 N.s/m. the
analytical results malthed the experimental results from CAM test. The contact force
mooel correspondsn to these values is shown in Figure 20, for both the stiffness part and
the damping part. variation of different coefficients produced some itzresting results.
When stiffness coefficients A and B are increased, HIC increases linearly, while
maximum deformation of the front panel decreases. However, when damping ccefficient
CO is increased, HIC decreases first, and then increases after a while (Figure 21).

low.

E
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Figue 20. Contat force mode: (a) stiffness pan; (b) damping part.
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Figurm 21. Variations of coefficient Co.
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This means that for a given value of A and B. Lhere is a value of CO that minimizes HIC.
In order to keep the head injuries minimum, the value of Co should be 87.5 N.s/n and
the material for the bulkhead, including both frame and padding material, should have
about 0.057 meter of maximum d"s'lacement requirement.

The parameters A, B and CO in the contact force model were then opumized by
subjecting the bulkhead defopnarmon 6 to be less than 0.057 meters and then minimizing
the bulkhead acceleration 161. Following the procedures of section 4, the optimized
parameters are A- 61.7 N, B-2.8 1/rn and Co= 491.32 N.s/m. Figure 22 shows the
vanation of contact forces at the optimum stiffness and damping properties. Materials
are being searched now, that have similar amount of energy dissipation capability.

Ledmllmdm (mn)

Figure 22. Variaton of cotact for, at optimum stiffness and damping properties.

Based on the preceding discussions, a drop tower was designed to simulate the head
strike on the n (Fir 23). This facility consists of a dummy head assembly,
holding assembly, a wire rope guided system, and an impact absorber (panel). The
velocity of the system depends on the height from which the dummy head is allowed to
fall freely due to gravity. The acceleration is determined by fixing accelerometers inside
the dummy head. Two wire ropes, controlled by motors, are used to raise the head
assembly to the required height from the ground level. The attainable velocity from this
method vanes from 5.2 m/s to 17.4 m/s. For a given velocity, the head is dropped onto
the absorber, and the amount of crush left on the absorber is recorded. For example,
to attain ani ms velocity of 14 m/s, the head is released from a height of 10 m. Based
on the earlier discussions, an absorber that has a crush of less than 5.7 cm is an
acceptable one. For justification of the results, the RIC is also evaluated from the
accelerometer data, which has to be less than a value of 1000.

6. Concluslon

A continuous analysis method ha- b'- presented for the direct-central impact of two
sollds. To represent the variation of the contact force during the contact period, two
Hertztan models are used, one with hysteresis damping and one with local plasticity
effects. At low impact velocities, energy is dissipated in the form of internal damping
or heat. If the initial indentation velocity is not negligtble compared with the propagation
speed of deformation waves across the solid, then permanent indentation is the dominant
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factor accounting for energy dissipation. For both models, based on energy and
momentum consideratons, the unknown parameters were evaluated in terms of the
geometrical and material properties of the contact surfaces, velocities of the solids before
impact, and the coefficient of restitution. A procedure for impact analysis of multibody
systems was then developed using the concept of effective mass. From the comparison
of the continuous analysis method with a canonical set of impulse/momentum equauovs,
it is observed that when significant changes occur in a system configuration before and
after impact, the use of piecewise analysis method is not suitable for prediction of
impact responses.

"Use of impact sled tests is the most common technique for determining the post-
crash dynamic behavior of an aircraft occupant. The impact sled and target tracking
facilities available at National Institute for Aviation Research (NIAR) were used to
conduct a study on occupant responses in a crash environment. Parallel analysis
capabilities, including a multbody dynamic model of the occupant and a finite element
model of seat structures, have been developed. The analysis has been used to
reasnably predict the Head Injury Criteria (HIC) as compared with the experimental
impact sled tests for an occupant head impacting a paneF A nonlinear viscoelastic
contact force model was developed. Suitable values of the coefficients in the contact
force model were obtained and the conrlations between the coefficients, IUC, and
maximum deformation of the front panel were determined. A non-sled test method has
been designed to determine the head injuries as well as the performance of a particular
impact absorber.

MII. O mI. RI&L

m em

I lV r"M

Figure 23. A head-strike test rig.
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DOR FRONTAL CRASH VICTIM SIMULATION

Chnsan Goualou -Eric Vinecoq - Jean-Pierre Faidy
L R S A. Research Laboratory for Automotive Safety
Ecole Centrale Pans - P.S.A. Peugeot Cinotn
Chitenay-Malabry, France

ABSTRACT. The am of the paper as to present the methodology for data fitting we
developed and followed to perform crash victim simulations. The project cared out with
P.S.A. Peugeot Citrodn car company, consisted in modelling and fitting efficiently all
interactions between a dummy and a car during a frontal crash. This work was
accomplished on the basis of standard crash experimental measurements without making
systematic ticklish test identification on parts of the system. The final purpose is to
optmise the safety equipments. For this study, we choose to consider the dummy as a
rigid mulidbody system and to use the program MADYMO from T.N.O. (Delft).The paper wil first briefly present the system to model ;,

Then, input and output parameters will be identified and classified. The methodology
used to fit the model to sled tests will be presented, with the help of a sensitivity analysis
and/or a rules system. We will explain how this approach pernmitted us to correlate the
model for very different crash test configurations with the same basic data. Parual results
of two siuslanons will be shown;
- Finally, it will be explained how to take into account in the simulation effects of a few
phenomena which occur in a real crash and are not described by the theoretical model.

1. Introduction

t Numerical methods have been recently introduced for the simulation of various
configuration automotive crash tests. In this field of mechanical analysis, our aim is to
evaluate the coupling between the car and the dummy, during a frontal crash. By using a
relatively simple model, the principal purposes of computation can be : Undeisanding
during the modelling and evaluating the fitted system by simulation. Our paper deals with
this first aspect

S 1.1. UNDERSTANDING DURING TE MODELLING

- To know what happens qualitatively in a very short time (0.2 second) in terms of the
succession of contact. deformation (springs) and motion of different pasts of the system,

to understand the behaviour of the dummy and the restraint system, meaning the
signification and the influence of few global parameters.

1.2 EVALUATINO THE FIrtED SYSTEM BY SIMULATION

in order to compare different configurations of crashes using a change of one or several
significant parameter(s) without malng costly experiments ; and with the insurance that,
excepted for wanted changes, all parameters remain unchangea
-and to evaluate the hierarchy of the parameters and their interaction,
- to show tendency and sensitivity of the system by governing parameters,
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- and to finally opumise the system.

13 A GENERALPROBLEMFORTHE MODELLING

In fact beyond our practical prject, we were aware of a general problem durng the
building of a numerical simulation model A lot of standard methods and programs are a-
vailable today. The engineer, after having formulated his theoretical model, needs to find
.he best input data set for a specific application, fitting closely the system. Foe that
purpose, he may analyse the experiment data and conditions to find some parameters. In
fact. all input data is not easily identifiable during the experiment (even the geomeuy). A
common approach is to make systematic test identificaon on parts of th: system, espe-
cially for stiffnesses. But often, such a partial test is very difficult to conduct, and it
provides data that doesn't fit well the crash reality or/and doesn't lead to a good
simulation. As a consequence, it becomes necessary to modify the test data to obtain a
better correlation. With this problem in mind, we choose to minimise the number of such
tests, to make the more practical and reliable of them (example : static retractor or seat
pan stiffiesses) and to manage the fitting of ticklish parameters by finding the best
correlation (example : fiction coefficient). Even though we knew that the more the
system is coupled, the more difficult is the formulation of the data. we were sure that this
approach will help us to understand better the phenomenon. This approach justified the
motivaton in chor-sing a relatively simple model, with the advantage of a very short
computing time 'a few minutes on a Unix station).

2. The system to -nodel

The interacuo, between the car and the dummy is our principal interest. Thus the modc
concerns only the dummy and its direct environment (figuse 1). Even if we began first to
consider sled tests, after having noticed rather 3D motion for the dummy in car crashes,
we choose to built directly a 3D model.

The dummy is modelled by 13 rigid parts
(materialised by the skeleton on the sketch)
which are connected by 12 joints. Each joints
are spherical and owns complex angular
loading and unloading characteristics. A certain
number of ellipsods are added to the members.
on which a contact may occur. The model
allows contact between ellipsoids and ellipsoids
or planes, typically between pelvis and seas,
foot and foot planes, chin and upper torso, arms
ad leqs, head and knees, etc.
In reality, there is a deforrmaton when a contact
occurs. The model detects a simple geometric
interference and generates a complex force
function of the interference and its velocity. For

fig 1. The dummy and its environment each force-deflexion law in the model (joint or
contact), it is possible to introduce friction,
damping and hysteresis

As can be seen in the figure 1, for the environment we incorporated a seat, a standard
3 points seat belt, a foot pan and a toe board. It should be noticed that for a real car, it
will be essential to model the dash board.
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The belt may be decomposed in 5 segments, whose extremities are on the ces compo.
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3.1 1. Intrnsic parameters. Dummy data: With Madymo, the model was almost ready to
be used. A data base for the dummy, we employed for the sled test, namely the Pat 572
dummy, were furnished with the code. It conums all the validated dynamic properties of
the dummy. We found useful to modifv the ellipsoids and the location of the accelerome-
ters proposed in the previous data base.

The final purpose is surely to determine precisely the other intrinsic and often fuzzy
parametem. after what they will become validated, but a with good portability of them on
several tests. For the very first test, it is also necessary to estimate them rougly using me-
chamecal sense and experience.

3.1.2. Test dependent parameters. Dum.
my inralation : The dummy, our princi-
pal interest, is taken as the centre of the
geometric world of analysis. It is not a
simple task to place it in a accurate posi-
non (21) problem), before adding the other
elements around it. As the dummy is
formed by rigid bodies linked by spherical
joints, we must determine the orientation
of them and choose a reference point. The
main difficulty concerns the localisation of
the hindered joints for the spine. A gen-
metical method has been used assuming
that tere is a zero torque tnitially in the
spine's joints. As a consequence, the spine
ma be considered frozen and one degree

fig 2. Two targetsto.detmithe posi.. of = exists for the dummy position,
S. Two ta e hdered rjints which is the lative anle between the glo-

ofthehinderedjoints hal torso and theuper legs
With the postion of two =tare respectively on the head nmee, given by the film,it is very simple to deduce alyticaly the H point (centre of the pelvws-upper legs joint)

and the whole postion of the dummy torso and upper legs. The other member orienta-
tions are identified from the film easily.

Belt route : Another problem is to find the routes of the shoulder and lap belts on the
dummy, with the evidence that this mutes often may change during a crsh, correspond.
ing to transverse slip not modelled in Madymo. Another reason to trest this problem ana-

lytically is that we wanted to simulate earlier tests.
where the connecting points of the stap on the dummy

C were not known. Therefore we choose to model the
route and calculate geometrical characteristics of the
belt with a pre-procesor, in the initial position of the
dummy. It is explained below how to control this pa-

The corresponding model is built by assuming that
the shoulder belt, as the lap belt (example in figure 3),
were each contained in a plane and that each segment
is tangent to the ellipsoid to be considered. As the
plane must be built with a line formed by the two an-

A chorage points (A and D), it may be driven by a single
fig 3. v.ie single parameter e to parameter as an angle around this line. For such a pa-

find the route of the lap belt rameter, the pre-processor provides the connecting
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points coordinates on the torso, respectively the pelvis (B and C). and the length of the
strap is contact. It is interesting to notice that during the simulation of various tests, the
maximum corresponding plane default doesn't exceed 3 cm for the shoulder belt

Other elements : According to certain chosen geometric parameters (initial equilib-
um), our pre-processor computes the whole coordinates for the seat and the foot planes.

3 2. OUrrJT PARAMETERS

Output paramters am commonly recorded as time histories during a rest. They May be
classified for the data fining

Main parameters:
- upper torso backward acceleration
-belt segments fores
- targets trajectories (head, shoulder, pelvis and knee)

Minor parameters :
-the other accelerations (components, for the head, upper torso and pelvis)

Ticklish parameters:
- head acceleration components
-head trajectory (mainly at the end of the crash)
-shoulder trajectory

33. METHODOLOGY

The ease of data fitting is conditioned by the knowledge we have initially abot the co-
mon input parameters. We shall explain how we began this study in an complete un-
known. The idea is to make a first rough fitting and to proceed after by refinements Ob-
viously, after having determined the intrinsic parameters on several correlations, it will
be easier and faster to simulate other rests.

3.3.1. First rough fining (fArst sfmlaion of a first test). All the parameters are inmally
estmat

The first step consists in correlating the upper torso backward acceleration, because it
is in a close relation with the initial kinematics energy of the dummy and so mainly af-
fected by only 2 main parameters. Thus, first stage : the starting ame of the acceleraton
cUrve gves the global slack of the belt (Test.dependant). Second stage : the stiffness of
the shoulder belt (Intrinsic) is fitted by correlating in timing and height, the maximum ac-
celeration (and the maximum force in shoulder belt segments if measured).

The second step consists in correlating knee and pelvis targets trajectories. Slacks (")
and stiffness (1) of the belt lap a the toe board are determined by the horizontal excur-
sions : and stiffness (1) of the seat is determined by the pelvis penetratton. The friction
coefficient (1) between the seat and the pelvis is adjusted in correlating the maximum of
lap belt foce.

In a third step, we may fit the friction coefficients () conceming the belt, by correlat-
mg the various force-time histories of the belt segments and the head target trajectory. 4

For next correlations of other tests, we shouldn't modify the intrinsic and work out on-
ly with the test dependant prameters. If a better correlation is obtained by changing an
intrinsic parameter, we have to find an explanation of this, and examine the effect of this
potential change on the previous simulations.

3.3.2. Reflnemnet. As the parameters are strongly coupled, it is not evident to find a good
solution for the input data set. In changing one parameter, the whole output parameters

5
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may be affected, conducting to reviw the other input parameters previously fitted... Thus
is is important to proceed regarding the lucrarehy of the parameters. After a first rough
correlaos . it becomes necessary to play with all the parameters. In these condiuons, on-
ly the expcrtence of the engineer (or simple ticklish identafication test) may permit to
reach an acceptable solution. Thus we choose to make a sensitivy analysts, whioh is pre-
sented figure 5 in a qualitative matrix on one hand and to heap up observed effects of
changing parameters in a formal rules system on the another hand.

For the building of this matrix, we have to make several remarks
-The mputi (one line) are supposed increased (tuned up from an estumed to a maximum
feasible value), and we look at the qualitative variations of the outputs (relative to an ex-
perimental scale) : 0 means no influence. + or - a significar one, +4- or - - a strong one
and + - a non-monotonic dependancy ;,
-We consider here a parameter as a globalised dita. For example, at an increase of the
belt stiffness corresponds an amplification factor o, the basic low (forre-deflexion)
-For the belt angle : an increase of it provides higher comrectng points on the dummy
ellipsoid (see paragraph 3.1.2.) ; .
- The f notation is an abbreation of friction coeffiient.

The sensitivity matrix, regarding certain output paramates, is very useful in predicting
which input parameters have to be increasedo e to obtain a better correlation.
However the validity of the mtix keeps staying local and it is therefore necessary to fur-
nish an initial approximanon of the data set not too far from the solution and to update
the maw. when gemng a good experience of the system behaviour.

As the rules system contains a lot of relations, it is
not easy to present it in this paper and we give here
only an example, figure 4, between friction coeffi-
cient dummy-strap and head trjectory : an increase
of the friction coefficient ( fl to f2) leads to a reduc-
tion of the vertical component of the side view tra-

f2 jecty of tehead.
This tools, implemented at each new test correla-

fl don, pertmtted quickly to describe above numerical
results, phenomenological behaviour and to in-

figure 4. example of a rule prove the data set, with common inmnsic parame-
ters or with identified differences.

* Limits of the model

4.1. NTRhODUCTION

Several problems occur d'ring the data fitting approach. Scme pheno-aena. that can't
be evaluated experimentally for a common test. seem to influence sharply the behaviour
of the dummy, and are beyond the capabilitics of the model For example, large rotation
of the pelvis may introduce a goobal stiffness for the oontat with the seat very different
thin a previous measurement with the pelvis normally seated. Ever for this contact, the
s'indarC friction trael, which at a zero relative speed, could only correspond a zero fric-
non force, leads to unrealistic acceleration for the pelvis when it begins to come back,
een unstability. It is beyond ,e scope of this article to explain all the numerous prob-
lems of modelling, we had to deal with, but the most important, that are the pillarO))-nng
clamping and the torso wisong control.
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4 2. PILLAR RING CLAMING

For the model as the retractor part is pas-
sive. ship at the pillar rng acts evey time. cx-

6. Thus, a simple friction relation exists be.
tween the tensions of the two belt segments :
Retractor part and shoulder upper belt. These
forces key growing always in a ratio given
by the coe fictent friction at the pillar ring and
the angle formed by the segments (none con-
stant). As consequence for the txe hsstory:
After havuig caught the slack, the forces In-
crease in this ratio with their am= reached
in the same ime. After the maxima the retrac-

0 upper shoulder pan tor part stands at the same level wnen the
A computed retractor pat upper part begins to decrease, until the ratio of

o experimental retractor part spr he again. Then, the retractor part

figure 6. Belt forces-tme histories In the reality of a test, the retractor part
force-ime history doesn't follow the model. It

to prove that the friction coefficient is
at 'he beginning until it increases a

lot. In othe terms, a clamping occurs (c). The consequences of this phenomenon are se-
vere for the head, for which it becomes impossible to reproduce accurately acceleration
and trajectory. In order to take into account of this phenomenon, a high constant friction
coefficient has to be used.
As an example : For the second test presented in this paper, this phenomenon occurred

surely. In the simulation, the head acceleradon is lowered, and the tajectory increased.
Of course, it would be possible to correct the simulated trajectory by reducing the belt
slack, but it would offset the maximum time and perturb the correlation of the upper torso
acceleration too

4 3. TORSO TSTING CONTROL

In figures 7, 8, two series of sketches of. ame test simulation are presented. The only
difference concerns the initial mute of the shoulder belt on the upper torso. The first sun-
ulation reflects a 2D behaviour. For the second, the torso twisting is very pronounced.
According to our method to describe the connecting points (with a single angle to fit the
initial supposed belt plane), we need to be careful about this parameter and to co.,trol it
by an agreement of .I) kinematics of the dummy tormn Of course this control must be
made during the dar fitting process. We must pcmat out that this ticklish phenomenon is
in reality contmmld by the initial position of ti. belt on the shoulder tnd she transverse
slip. It could be perhaps well modelled with a different approach (finite elements). How-
ever we think that it is vital to understand thi,, global phenomenon.
In the same way, tt i. necessary to controt the ap belt route, in order to get a good cor-

relation for the parameters concerning the pelvis. According to the more or less realistic
rotation of this element in the simulation, the connecting points must be placed relatively
htgh in the minal position, so that, at the maximum tension tme, the route seems correct
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Orns 60 ms looms

above: near the neck
figuzre 7 influence of the shoulder belt route on the dummry inematics - front view -

below: middle of the shoulder

Ooms 60 ms 100 ms
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100 ms

above -near the neck
figure 8: influence of the shoulder belt route on the dummy kinematics- side view.-

below: middle of the shoulder

100 ms
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5. Two examples of correlation

As an illustration of this approach, we present here, figures 9 to 16, in the annex, the
results of simulations of 2 sled tests, managed with the same intrinsic data and methodol-
ogy presented in this paper. This tests were realised ' very different configuration and
may be seen as extremes at the speed of 48 km/h impact (figure 9). The second simula-
non was so severe, that it was useful to reinforce the seat at his front, and a rigid rod may
be observed in a simulation (which interacts with the pelvis). For this test, we think that a
Pillar-rig clamping occurs, with the difficulty to correlate both acceleration and trajecto-
ry of the head.

6. Conclusion

Thanks to it flexibility, good reliability and low computation time, numerical multi-
body ismulation can be very useful so understanding the global behaviour of a complex
mechanical system and further in improving It However, it's often a long way to fit accu-
rately a formulated model with the experi ent. What we attempted to do primarily in this
project. was to make a systematic approach in correlating such a model, in the field of au-
tomotve safety. We thought that only a formulation of consistent data will permit to Sim-
ulate different configuration tests and interpret the influence of global parameters, before
performing more accurate but complex computation with finite elements method, for cx-
ample.
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ANNEX: Results of two simulations

Remark: for all histones, the nine unit is the ms.
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- figure 9. sled acceleration-nmie histones -
test I : low seventy and test 2: high seventy
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104 ms
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-figusre 11. Kinematics for the hush seventy test -
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ANALYSIS AN") DESIGN FOR VEHICLE CRASHWORTHINESS

JOAO M. P. DIAS and MANUEL SEABRA PEREIRA
IDMEC - Insrrinato de Mecdnica
lard two Superior Ticnico

Av. Rovisco Pais. 1096, Lis boa CODEX
PORTUGAL

ABSTRACT. Tris paper describes a methodology for the sensitivity analysis and optoiiaion of plin
consalajod meickumical systema. Direct differmaion methods and flexile jiferatc toeleiques have beentiiused in the design sensiavity calculations. The rpumzin roees is developed wtihln the frametwork of
mnathematical programmning techique-s. The scrnitivity squatdon were constructed symbolically and
subsequently buegrued in the dyntamic arns equains ofnioumo and wolved siltiaeusly.

Some examples are solved to dentonstrais ie use of the methodology including a crashwvorthnes
design problenm. where a plastic hingle concept has beesi osed to moidel plastic defornations, of the velocle
atructure during the Wiipmc

1. Iratrodusction

During the last twenty years, computer aided sialysis of crashworthiness and
structural impact has re-eived a large attenton and is about to emerge as a powerful
methodology to be successfully applied in practical situations.

Different numerical formirlatiot's with varying degree of complexity and accuracy
have beon proposed by Kasnal (I1I using spring mass models and by Pitico and Winter (21
and Halyduk et &1. (3), using finite element methods. Recent efforts in the field of non-
linear structural dynamics have contributed for the development of well known
commercially available codes such as PAM-CRASH (4) and RADIUS which ar
enhancements of the public domain codes DYNA-3D (5) and WHAMS (6). These
program can simulate with improved accuracy several different structural impact
phenomena, such as large localized deformation, structural instabilities, transient
vibrations cnd stress wave propagation. These codes, however, require large computer
resources which make them rasher unsuitable as part of a design tool to be used in the

eal einstages.
As a reiilt, design for crashworthiness is. in moss industrial situations, still done

empircally or is hazsed on experiments, yet some crashworthintess design capabilities
have beern developed and reported in the literature (7-9).
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In general, design nstivky analyss, DSA, since it involves the calculation of cost
and performance functionals gradients w.r.t. the desig variables represents a necessary
step in the optimization process and provides an important tool for design improvement
and "what if' studies.

The DSA for the dynamic response problem for stuctural and mechanical systems
has been traditionally treated with separate formulations by Haug and Arora (101, Hsieh
and Arora (11), Menc (121, Haug and Mani (131, Tortorelli an Lu (14), Choi and Wang
(15). More recently Cardoso and Arora (16) have proposed a unified approach for
structural and mechanical systems using the adjoint structure concept. However the
adjoint formulations; yieldlinto'a terminal valise problem that needs to be integrated
backwards in time resulting in a more complicated'computational implementation as
compared to the dirt differentiadon method which has been adopted herein.

In this paper a crashworthiness design methodology is presented where a structure is
approximated by a multibody constrained mechanical system with revolute joints and
non-linear revolute springs representing plastic hinges. This type of models have been
successfully used in vehicle crash simulations (17.191. For selected structural
components, design variables are defined representing the corresponding linear elatic
bending stness and the assoTiated limit plaic moments.

2. Dynamic Analysis of Multibody Systems

For pla systems a 3 dimensional vector of Cartesian generalized coordinates, qi, isdefined for each rigid body: one rotational and two translational coordinates. The
configuration of a mechanical system can be described by the nc vector of Cartesian
coordinates, q. containing the generalized coordinates of all bodies in the system.

These coordinates are not all independent due to the existence of constraints
representing different kinematic joints, such as spherical, revolute or translational joints.
The corresponding nh constraint equations can be written in the form

) [(q,t)q= [ t)., h(q't)]
T =0 ()

Differentiating (I) twice w.r.t. time
• bqq + Ot - 0 () ;

and (3)
• q~q -¥(3)

where y "qq)q4- 2Oqt- u'

The Lagrange equations of motion for the multibody system can be written as

Li ~ ~~574 .- '*



M q+ qTX g (4)

where M is the nc*nc generalized mass matrix, g is the nc generalized force vector and
reis the oh vector of Lagrange multipliers. Equations (3) and (4) can be organized in the

mamx form
M 4>T]Jq) Ig I
O 0 X _f, (5)

forming a set of differential algebraic equations which has to be solved for the
accelerations 4. The vector of Lagrange multipliers X is a by product of the solution that
can be used with great advantage to obtain the reaction forces in the joints. The reader is
referred to reference [201 for more details.

Using a proper integration scheme [21), equation (5) can be integrated in nine to
obtain the velocities q and the positions q.

3. Design Sensitivity Analysis

The design problem can be stated in following form [
Minimize T/O ( b )(6)

Subject to the cons ras whi

S0i = k +lncon 1.I 7

bI 
!r b 5 bo  (8)

where TO ( b ) and ( b ) are functionals representing the objective funcion and the
constrains respectively. and ncon is the numbir of constraints. bl and bu represent'
technological lower and upper bounds on the design variables and may also reflect
acceptable structural designs for the etastic stucture under normal loading conditions.
TF 0 ( b ) and T , (b) are functioats of the nb design variables b = [I1 b2,..., brib]T. b is
also function of the state variables which include positions, velocities. accelerations and
Lagrange multipliers, thus

,p= ppoF° c IT= F q , , . b) (9)
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During the optimization process the cost and constramit functional must be evaluated
as well as the corresponding grdients %-.,.t. the design variables

T., =  and 'lP= T (10)

A sensitivity matrix, L, can be defined such that

alp
= 
. T :b . LTSb (I

Different types of constraints have to be considered which may correspond to
different design criteria for the dynamic response problem [101:

ci) Functionals of the particular type wtth the form

i - max f(q,/, qt,b) for t
o S0  tt (12)

may represent, for example, the maximum acceleration which occurs during the impact
in & particular point of interest in the structure only once and at ditnct tme tl. tOandtt
are the initial and final time of the impact period, respectively.

c2) Functionals of the integral type with the form

tI
P =5f(q, q. 4, X,,t, b) dt (13)

may represent either the total energy absorbed or a standard measure of vehicle crash

seventy index which is given by (71

Ici Ja2dt

whee -&(t) is the deceleration of the passenger compartment or the passenger itself

when slfing an obstacle, as for example, the front panel in a frontal collision or a door

in ide mpact situation.

Using the direct differentiation method, as proposed at reference (131, a rut step for
the design sensitivity analysis requires the linearization of the functionals (12) and (13).
Without loss of generality just consider the first case

S= (fq6q + fq6q + f484 + f).8) + fb~b)It =tk (S
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This equation requre the eh'ninanon of the dependency on the state variables. From
S a Taylor series expanaion o! the positit' vector

q(t~b+dh)= q(t,b)+o'b8b+qbb6b~bT+.. (16)

the first variation can be obtaned as

Sq- qb~b (17)

5 Similarly, the first variations for the other state variables can be obtained as

Sq=- 4b~b (18)

8 4= 4b8b (19)

8 X~= Xb8b (20)
For design sensitivity analysis the kinematic constraint equations (1) are also

functions of the design variables. thus

0 a O(q,t~b) = 0 (21)

I ~ ~Calcilcrng the first variation and raking into account (17)

Dqb- O (22)J

Differentciating (22) twice w.r.t. time the sensitivity equations for the velocities and
accelerations are obtained

Oqqb -- (Oq4)q qb - ib (23)

044b- 1 46 -
2

'0q~b -$ (24) Y

The generalized mans matixo and Ldse generalized force vector are also functions of the
design variables. thus

M = M(q, b) (25) -
and

j gq. 4. t .b) (26)V

Taking the first variation of the sysem dynsamic equations of motion (5)
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Mb + qT)Xb = gqqb +g4qb+gb-(Mq)qqb~(27)
-(M4i)b - (NX)Qqb + (4qti.)b

Equations (24) and (27) can be wnnen in matrix form z,;

M oI 
IbJ

gqqb + g4qb + gb -(Mq)q qb -,(Mq)b. (eq)q qb + (4)T)b}
-{gqqb - 2iq(lb -6b

(28)

which can be integrated in tine with the initial conditions

qb(t ) qob
bt 0) i (29)

Since equations (5) and (28) have the same left hand side, they can be solved
simultaneously to obtain the state variables q, , 4, X. and the sensitivities qb, qb, 4b,
Xb , This fact allow a r.eater efficiency in terms of computatioaa efforts. The right

hand side of the equation (28) has obtained using symbolic computation. Some
examples of the equations obtained by symbolic computation, using the symbolic
manipulation program MATHEMATICA [221, are shown in the Appendix.
3.1. OPIMIZATION PROCEDURE

Several optimization algorithms. such as the feasible direction method, the gradient
projection method, and the linearization method am coded in a multi.purpose program
ADS (advanced Design Synthesis) (231, which was used in the present work. A modified
projected gradients method [241 was selected in the present numerical examples.

4. Crashworthine Optimization of an End Underfrane Structure

To simdlate the frontal structure of an end underframe of a railcar, a mechanicalmoiel wk developed as shown in figure I where V I and V2 represent initial velocitis

for a .ront] and oblique collision, respectively. In the geometric discorinuities of the
stnucture, t ight plsic hinges have been modeled to simulate the plastic behavior of the
structure. ach plastic hinge has a torsional spring mounted over a revolute joint
connecting two consecutive bodies.
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Simplified End underframe

'I Ii

Simplified Mechanical Model

Figure 1. Structural and mechanical model for an end underrane4
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The non linear response of the torsional springs is described in tertms of a quasi static:
moment angle relationship based on the'crves for plastic behavior proposed by
Anderson et a1.125).
structural response predicted by the crishworthinesa analysis for each design problemn.

Consequently, an objective ftinctio~n is defined as the maximum acceleration experienced
by the frontal pan, of the s~icture. Other objective functions can be defined associated
with the railcar crziisertity index VCSL

The beid fistiffriesi K and the plastic moment MI for the plastic hinges have been
chosen isdlgh,variablei!These two mechanical characteristics which are obtained for
each cross ectiot ind are Illustrated in figure 2 will give the necessay information fora
proper choice of optimum design cross sections.

Figure 2. Torsional spring characteristics for the plastic hinges

crah dforaton n odertopreserve a minimum survival space in the car

Thre crsh itutios hve eensimulated at a velocity of 6.89 n/s. The first one (51)
is a fotlmp6th eot(S)adthe thr S)aeoblique collisions where the

cons'6-1ltraintsntrare also to be impose&lms nteUSiUtC~a
Theobjctie fncionandcontrint, culdbepresented as

The aximm diplaemens X averespectively the values, Xs t.879.
XS=.7nX53=O.279m and X33=0.3605M to the lateral consuraint. For the impact

situations 52 and S3 a simulation tine t=0,lIs has used.
Two design variables are considered as b = tb1, b~i = lei. M11, where 01 and MIchrctrz th8000].dte lsi mmn.Th 11alds eco s

characterize a the lo e and h er siboent. he. inta d0.s01 vecto isd b01
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J ,
For the m dt simat ion SI, the results of the displacement and acceleration for the

initial and optimal solution, ss, shown tn figures 3 and 4, respectively. This results
show that the decrease i the maximum acceleration has achieved with a largerdeformation.

0,.

S........ 
tal

0.00 0.05 010 0.15 0.20 0.25 0.30
Time (s)

Figure 3. Displacemen, for the impact situation SI

6' 
O~tl

4 \

0
0.00 0.05 0.10 0.15 O 0.25 0.30

Time (s)
Figure 4. Acceleration for the impact situation SI

The results of the displacement and acceleration for the impact situation S2, are
shown in figures 5 and 6 respecively.

The substantial decrease in acceleration levels resr ted from the fact that the specified
displacement constraints yield an optimum solution corresponding to a very compliance "
structure.
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Figure 5. Displacement for the inpact situation S2
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T e s Figure 6. Acceleration for the impact situation S2

The reslts of the displacement and acceleration tor the impact situation S3. are
shown in figures 7 and 8 respectively.

Ins this cane, a very strong longitudinal constraint were imposed, resulting in a
constraint violation for the initial design. The optimal solution corresponds to a more fstiff strute resultig in higher levels of accelertin.
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Table I - Crashworthiness Problem of The End Underframe
____________ Crash Situation ________

SI S2 S3
Ojtie Initial Optimal Initial Optimal Initial Optimal
Ojcie 7.49 6.56 7.41 3.84 7.41 11.74

Function (0) ___

" Ox -~ - - 6.8X10-
4 

.1.8X10-
5

,bI -01 '0.073 0.1 0.0373 0.0985 0.0873 1 .09
E 2 m I 464.7 '4327.0 4644.7 -B521.6 44.

CPU Time(s) 520 - 40T7 3626

5. Conclusions

An efficient design methodology was developed for the purpose of studying an
optimtal vehicle body stnucture in a crash situation.

This methodology has been developed within the framework of mathematical
programming methods involving an efficient dynamic analysis capability where a I
vehicle structure is modeled by rigid bodies connected by plastic hinges to modulate
large structural deformations,. a endmntae o n

The capability of this methodology hsbedmotredfrandunderframe
structure in two impact situations, a frontal impact and a oblique impact.
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Appendix
In this appendix the general forin of some terms of the equtiona of sensitivities (28)

is shown. These terms have been obtained using the symbolic manipulation programn
11 fis ioun isfor a linear spring, as an exarrple of an actuator, and the second for

a tranislation joint as an example of a kinemnatic joint.
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ABSTRACT. This paper describes a design concept for multi body systens developed
in the ESPRIT ]I #5524 project caled "High performance computing for multidiscipline
dynamic simulation of mechanisms" (MDS)

I
.The concept is based on a simulation tool

combining multi body simulation, the finite element method and control engineering
(IFEDEM). The tool is developed further within the MDS project to complete an
automatic design optimization loop including dynamic simulation and sensitivity analysis.
The project is aiming for an interactive design environment based on simultaneous

Running from Nov. 1990 to April 1993 with parners from Germany,

Italy, England. Sweden, Norway and coordinated by the Danish
Technological Institute in Denmark

FEDEM - Finite Element Dynamics of Elasic Mechanisms, A multi-
discipline simulation tool for mechanisms developed by The Norwegian
lastitute of Technology and SINTEF Production Engineering, Norway.
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simulation and result presentation as curve plotting and animation. The designer may also
inspect the results as animations of mechanism motion including scaled deformations of
bodies and stress contour fringes. A Motif-based program manager tool is developed to
cont'ol program execution and data flow between the different modules invoi¢zd4 that
simplifies the designers interaction with the system. Also a STEP toolkit is developed to
stndardize'diuicomunica-don between internal and external program modules. There
has been deve!oped an interface for simultaneous dynamic simulation between the internal
multdiscpline simulation tool and an external simulation tool like for instance
MATLABI. with the simulation model distributed between the programs.

1. INTRODUCION

The MDS consortium were based on the software packages:

FEDE.M - for multidiscipline dynamic simulation of mechanisms based on a
nonlinear finiLe element formulation.
FEMGEN / FEMVIEW - for finite element pre-and post-processing

* KISMET - for high performance anmation

* OPOS - for Optimization analyses

* SESAM -the FEM analysis system

Based on the software packages mentioned above the objectives for the
project were:

a Combining and extending the actual software packages for muludiscipine
Simulation, FEM pee-and post-processing, mechanism animation and optimization
analyses.

- Extending the functionality of the simulation software according to the applicaton
partner's needs. f

a Extending the modelling and visualization capabilities within the field of
mechanisms, including an overall Motf-based user interface.

a Developing STEP interfaces for data communication

__ _ _

MATLAB - A commnercial available simulation system.
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0 Developing an optimization tool for mechanisms.

a Applying the software within the fields of robotics, aerospace. SME- applications
etc.

2. THE MULTIDISCIPLINE SIMULATION SOFTWARE

The simulation system FEDEM is a general purpose simulation system for multidiscipline
dynamic ,simuiation- of, mechanism motion combining a non-linear finite element

formlation with mechanism and control analysis. The different links of a mechanism are
modelled flexible from a library of beam. shell end solid finite elements. The links are
joined together by a set of joint types. Lin and non-linear springs and dampers may be
icluded in a model between links and in joints. Time dependent motion and loaing may
be included on links and in joints. From a library of control elements, a control system
for the mechanism may be modelled, taking the measurements from the mechanism
variables and generatng actuator forces on the mechanism.

Based on the user specified requirements, extended modelling functionality were
developed (3,4.6,7,1213,211. The new modelling fiunctionality developed within the
project ae, new and l.nproved joint and transmission models. joint and gear friction, user
subroutine interface, ,ixtended control element library etc. A typictl FEDEM feature is
the flexible sliding johts based on the prismati and cylindric joint primitives. These may
be used to model for example flexible telescopic joints.

A simultaneous interface to an external controller simulation package are also developed
and implemented with MATLAB as the external simulation package. The interface is
based on a general purpose socket communication for a computer network, and the
simulation codes (in this case FEDEM and MATLAB) may run on the same or on
different computers in the network. For the external MATLAB package a user written
subroutine is added. In this way the control engineer may model the control system i a
simulation package that he is familiar with as an alternative to modelling also the control
model directly in FEDEM. However, longer computer times will be the penalty.

A functionality for generating modal animation of mechanism deflection is developed.
and also rigid body kinematic simulation is made available in FEDEM,

3. MODELLING AND RESULT VISUALIZATION

For the muluo.scipline dynamic simulation, the links are modelled as FEM substructures.
Within the project the general purpose FEM preprocessor FEMGEN are used for
generating the FEM models for the different links of a multi body system. Conversion
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of the FEM models to the input format of the simulation program is straight forward as
for any general purpose FEM program.

Modelling the system model for a mechanism is usually not a functionality of a FEM
preprocessor. and a new module is developed within the project for this purpose. This
mechanism modeler ny import the FEM models for the different bodies of the
mechanism from the FEM preprocessor,,in thiscase FEMGEN. It is also of interest to
exportcoordinates of points on each link relative the link coordinate system, for instance
for joints, springs, dampen, loads etc., to the FEM prepocessor as external points for the
FEMinhtes'.,TbeI mchn irodeler will display simplified drawings for the different

'6 ii.a'p ' ren0tjom..t, springs, dampers, loads etc., as graphic symbols on the display.
Control 'models integrated in a mechanism are generated through numerical input,
however, these data will also be entered graphically in the next version of the mechanism
modeler.

A large amount of different kind of results are generated during a dynamic simulation
run. The result are generated on two levels, the mechanism and the link level, as for the
modelling. Typical result on the mechanism level are positions, velocities, accelerations,
forces, torques in external nodes, joints, springs and dampers. These type of data are
most conveniently presented as variable-time, or variable-variable curve plots. Also
variation of eigenvalues at system level and control variables ame most conveniently
presented as curve plots. However, animation of motion of the simulated multi body I.
system is a very important tool forthe dei ner (analyst) as a irst check of the simulated

results, especially when the simulation and visualization models are the same. Carrying
out some extra FEM processing of the results, the animation of motion may also include
scaled deformations of bodies and/or Von Mises stresses on the body surfaces. This gives
the designer very good insight into the dynamics of his system.

If the simulation also has specilied eigenvalue analysis for certain time incidents, the
eigenvectors may be used to visualize eigenmodes of the system. The first, second, third
etc. eigenomodes for a certain position may be visualized as mode animation by scaling
the egenvector by a sinus function.

The FEM results for the different pars of a mechanism may be displayed individually
in a FEM postprocessing program after converting the results to the actual visualization
programs daabs, as within this project is FMVIEW. Ali facilities for FEM

visualiation within the FEM postprocessor is then avalable for result visualifaon. Also
FEM results on the assembled mechanism may be visualized in the FEM postprocessor.

Because of the large models and amount of results in a F nM nalysis, traditionally the
analysis is divided in preprocessing, FE analysis and postprocssing. However, for
multidiscipline simulation in the MDS project %e am investigating the possibilities for

simutanousanalsisandresult visualization on a high performance conmputer system
using process to process communication between the simulation program and a set of

4
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visualization programs for arimation of motion, curve plotting etc (1,5,10,18,23.24. The
user is in thisway interactively controlling simulation parameters during simulation, and
if the simulation model is showing unexpected behavior, the simulation may be stopped
and checked more in detail before continued, possibly with modified integration
parameters. Alternatively, the -simulsition is terminated and 'the simulaton model is
modified before a new simulation islinitiated. In this way the user is in full control of
his simulation, with better undetntanding of a simiution model and fewer failure
simulations. The less productive waiting times during off line simulations will in this

way be eliminated, and the user may concentrate on the most resent results as they are~~generated.

Within the MDS project this philosophy is only tested for relatively small simulation
models b use this approach is very much dependent on the computer power available
for simulation and visualization. To make this a working solution for larger models,
much more computing power must be available for instance through parallelizaion of the
simulation and visualization codes between a number of high performance CPU's. Thesuper element approach for the simulation model makes it very wedt stted for
paillclization, especially if also strs analysis are to be executed and v fsualizod

simultourousiy. Certainly, this workig philosophy is feasble within the evolving
computer technology for relatvely large simulation models, and will be a research area
of high priority.

For multidiscipline simulation, a wide variety of computer programs are involved for
model generation, simulation and result visualization, and to make a unified working
environment for the user., the MDS-Prgrasm Manager (MDS-PM) is controlling the
different programs that are made avr Jable to the user and are keeping track of the
corresponding data and the transformation of data between the programs (8,16.17].
Program modules supplied by the consortiri, here called internal programs, are fully
controlled by the MDS.PM. External programs, that are prograns not controlled by the
MDS.conasorum,. are controlled by generating a window on the workstation for starting
the progran. These programs are then living quite independently of the MDS-PM until
their termination are reported back, and the workstation window is deleted. The MDS.
PM will set up dependencies and sequences between the programs and the corresponding
data models used, and when some data are changed within some computation sequence.
color codes are used to inform the use of which programs has to be re-executd to

complete the simulation with this updaed data.

4. DATA COMMUNICATION THROUGH STEP ETC.

A large number of data interfaces for the multidiscipline simulation are identified within
the MDS-project [21 as FEM models, mechanism models, control models, intermediate
simulation models, intermediae simulation results. FEM results, surface models and
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uansformation swirices for animanon of motion, time series results for mechanism and
conbrolV'ariables ere. All mrese data should be handled in a unified way and controlled
by i6i MDS-P. 'Eor the'pu'rpose of handling and contolling all these data the MDS-
STEP toolkdt',[15) wee developed. The toolkit is intended to aid an applications
dgram i the accessing f STEP data. Some of the tools provided are useful in the
deveti~ienit Df EXPRESS data models and validation and pnntng of STEP exchange
files. 'The toIkt comprises stand atone modules and a lsbraty of functions to access
STEP data.

For most o. the data interfaces identified above in the MDS.project. EXPRESS data

models are developed and implemented through the STEP toolkit. For rmany of the oata
models id,:ntified no standardized application protocols are avatiable as for mechanism
and control dat, and working STEP models for the MDS.project are then developed.
However, whe standards are evolving, as for FEM data, the STEP models used within
the project comply with these models. See Figure 1.

t.

! t t

Figure 1 AIDS STEP model overview

A new multidiscipline input format for modelling at system level, are developed. The
ams of this new format are to be more object oriented, and to have as few redundancies
as possible. This format makes mechanism modelling a quite stright forward task for ,
the user. Table I shows the enuty names used in this format and Table 2 shows an

example four-bar mechanism model.
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Table 1 Mechanism entities

NAME I ZTIES DESCRIPTION

MECIIANISM 1 Model name, gravity constantsetc.

ANALYSIS I Program Control parameters, etc.

LIN4K Link_____ position/orientation_________tc.

TRA I Positions for coordinate systems
_______us__ d in ;:; oi::,springs, damers,

JOINT _____ 0 Joint definitions

SPINO Axial and joint springs.

DAPE 0 Axial and joint dampers

MOTION4 0 * Motion input

HIG4EP.PAIR 0 # Modelling of transmissions

FUNTIO 0 * Functions dii ~ng input notions.
_____________ _________forces, sp i sifnesss etc

CONT1ROLJEOD 0 0 Input data for control module.

COVIROL-jO 0 Definition of control
______________ ________ I inputs/outputs

SEN0SITIVITY 0 1 Definition of sensitivity output
_____________ _________ for optimization

EDDATA I Indicates end of model.
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Table 2 Four-bar mechanism model example

lH05L-l000R I x~1 In FEDM a{ n'oi Mau..
0.,GOAV *00020
OOORAV .: .. 00
Z_=OAV *00010

AN6ALYSIS
ID I1
AW...010CR 'Path toO ,,1 o,oansm*
STAAT-MrIC 0 0.00002.00

*cTD 0.10009.01
?fl62002? 0.:100029-01

LINK6 ID I

=-RGN .0090 0.00001,00 0.00001.00
'020.010006 X.0 011 Hogs g

OR?01po?" * 10001,9:01 0,00001,00 0.00001.00

CRT-OR7001T 0.00001.00 0.00001.01 0.00001.00

C0.00510100.0 00 0001:0 0:0010
CJ..0200001 0.00001.00 0.1 001 0 00002,00

LC*..00006 *M 0.0000.00 0.00000 0.0000t,00
0.006105*1 0.10001.010:10, 0*0 o

CRT.POIN 0.00009+00 0.01:000,,0,0.0

I'.S01000r *0.40001+0 01
'001 00 00 '40 0

0I60.020006 0.00001.00 0.3001.0 0 0000

01?...00006T 00001+00 0.1001.01 0.0000t.00

TRr ID
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An EXPRESS data model for this format is about to be developed.

5. MECHANISM OPTIMIZATION

Optimization analysis are about to be a standard feature for the designer using
convntional FEM programs. In mechanism design, especially fletible mechanisms,
however, optimization analysis is a new feature that has up till now not been available.
In the MDS project there has been done quite important developments towards an
automatic or semiautomatic optimization loop for the design of flexible mechanisms
[9,14,221.

For the search towards an optimum, sensitivity gradients from the simulation run is
essental A senstity is defined as the derivative of a response variable with respect
to a so called "design parmette in the mechauism model A design parameter is a
parameter in the model effecting one or more input data for the simulation. Typical input
data that could be effected are stiffness', damping coefficients, additional masses, initial
conditions, loading, parameters in functions etc.

Sensitivity requests defines outFit variables from a simulation where sensitivity
calcultion is required with respect * the design parameters. Typical sensitivty requests
may be for positions, velocities, a-ci.reations, spring or dampr forces joint variables etc.

The sensitivities ar calculated from pertubaing the design variables one at a time in the
input data and the sensitivities for all positions, velocities and accelerations of primary
simulation variables are evauted These sensitivities are then used as the basis for
calculating the requested sensitivides. The sensitivity analysis during dynamic sinulauon
is quite efficient because the mangularized system matrices from the integranon could
be reused for the sensitivity analysis requiring only forward and backward substitution
to solve for the senstivities.

Requested responses and sensitivities may be calculated repeatedly in the optimization
loop and the design variables are updated accordingly in the simulating model. The
optimization algorithm is wordug with respect to a set of constraints for the simulation
responses and some criteria defines when the optimizaton should be terminated. The
reslts from the MDS project in this field is just the beginning of what seems to be a
very promising and exciting tool for the designer in the uture.
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6. MULTIDISCIPLINE APPLICATIONS

Within the MDS project the simuilatin tools has bteo applied on the IRB6000 industrial
robot (19,26) by ABE Robotics Products'AB in Swede2., see Figure 2.

Figure 2 The visualization model from the IRB6000 industal robot simulation

icuigstress contours
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I Deployment of satellite boom, including latching (251, were sunulated by Dormer GmbH
in Germany, see Figure 3.

I

Figure 3 The isualzon modelfrom the satellite boom deployment simulaflon.

Mwning center operations 131] am simulated by Syntax Factory Automadon in Italy,seFigure 4.

I I

Figure 4 The visualization model from the mactuning center simulation.
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7. CONCLUSIONS

The very ambitious objectives set up for the MDS project has to a large extent been
fulfilled. New developments and applications has to some extent been running in parallel,
and some of the new features developed towards the end of the project has not been
tested fully in real applications.

The simultaneous simulation and visualization and the opumization and sensitivity
analysis were planed as test implementations to investigate the potentials in these areas,
and from the exp'enience gained so far it is very promising.

For all the other objectives for the MDS developments, the resulting programs are in a
state close to a commercialization standard.
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